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Greetings from President, Kumaraguru Institutions.

Vanakkam, I am happy to write for the publication that encapsulates
the knowledge, insights, and innovative ideas that have flowed
through the corridors of this landmark International Conference on
Implementation of Al Technologies in Tamil Computing. This book
stands as a testament to our collective commitment to advancing the
frontiers of technology and preserving the Tamil language. Artificial
Intelligence (AI) and the Tamil language have converged in a
fascinating journey that combines tradition with cutting-edge
technology. This convergence has the potential to reshape, how we
interact with and preserve not just the world's oldest language, but

also one of the few languages that represents a complete culture with Iyal, Isai and Nadagam, and
also with very rare spiritual contents. The conference has been an extraordinary journey, a
convergence of some of the brightest minds and dedicated individuals in the fields of Al,
Linguistics, and Tamil. It must have ignited the torch of innovation and exploration, redefining the
possibilities of Tamil Computing in the Al era.

I am also reminded of the contributions of our visionary founder, Dr. N. Mahalingam to Tamil. Dr.
Mahalingam's unwavering passion for the Tamil language and culture has left an indelible mark on
the history of the language. The book we release today is a manifesto of our shared vision. It
represents the combined wisdom of scholars, researchers, and industry leaders who have committed
themselves to bridge the past and the future while propelling it into the digital age. It reflects the
dedication and relentless pursuit of excellence demonstrated by INFITT, who work resolutely to
promote Tamil Computing in diverse areas bridging the gap between traditional Tamil and modern
technology. I would like to express my appreciation to INFITT and the Kumaraguru team who
worked on bringing out this book. It is through these collective efforts that we pave the way for a
more vibrant and technologically advanced Tamil Nadu. With this book, we take a piece of this
conference's spirit and knowledge with us, as we move forward into uncharted territories. May it
continue to inspire us, in our ongoing endeavors to nurture the efforts in Tamil Computing and the
Al technologies that drive them. I extend my heartfelt thanks to all of you for your presence and
contributions to this landmark conference.

Shri. Shankar Vanavarayar,
President, Kumaraguru Institutions.



Greetings from Director, Kumaraguru School of Innovation
\§ I am very happy to be a part of the INFITT Tamil conference at
\ Kumaraguru Institutions. The wealth of the Tamil language is in its
\ literature and Tamil has been more than just a language for the
| communitywhich sees it as a way of life. Be it integrity, administration,
| friendship, love, child development, etc Tamil has everything and it
- makes it easy forus to use them in real life situations. When a language
E which has evolvedover the years and has been in usage for thousands of
. years has to meet thetechnology like Al it says “Vanakkam AI”. I feel
Al is more an enabler for the young Tamil speaking community to know
about the language’s rich history and culture. The modern generation which is more used to the
handheld devices should get an opportunity to communicate with the Mother Tamil and understand
the beauty of the language and realize why we call Tamil as a “Vazhviyal” (life science) rather than
just a language. I wish the conference like these bring researchers from across the country and the
world to inspire younger generation to make Al learn Tamil and engage with the Tamil speaking
people.

I would say Large Language Model when applied to languages like Tamil, will make it a Largest
Language Model and there is no other way to respect and recognize a language which has been
through ages, still being relevant and make people to wonder on its beauty. The need for creating
LLMs for languages like Tamil are manyfold, it enables to preserve the rich knowledge hidden
across the texts and would be able to bring them to the needy based on a colloquial slang-based
prompt. People of this generation that misses the cultural values may get the benefit of this modelto
help guide them in appropriate ways in various stages of life. Be it the moral stories for the children
which is usually given by the grandparents, an interactive system that can tell the meaningof the
words and their pronunciation, supporting creative writing skills, translating the content forthe
consumption and better understanding, Al can do wonders. The language which has been
strengthened by the creation of Sangam by great kings of the past is to be driven by Al in future.

Vaazhiya Senthamil, Vaazhga Bharatham.

We wish the team all success in their future endeavours.

Dr. Raghuveer V R,
Director, Kumaraguru School of Innovation.



Greetings from Principal, KCLAS

It is with immense pleasure that [ extend my warmest greetings on behalf
of  Kumaraguru College of Liberal Arts and Science. We are delighted
to host the Conference on AI Technologies in Tamil Computing,
organized by the International Forum for Information Technology in
Tamil. This gathering represents a significant milestone in the
convergence of Al and the Tamil language, and its inclusion in our
conference proceedings is a testament to the importance of this event.
Tamil, a language of profound historical and cultural significance, is

“® poised for a technological renaissance. Al stands as a pivotal force,
shaping 1ts future by facilitating innovation, enabling efficient communication, and preserving
linguistic heritage. As the Principal of KCLASI am excited to witness the dynamic discourse that
unfolds during this conference, which promisesto chart new frontiers in Tamil language computing.

The N.Mahalingam Tamil Research Centre, launched inthe enduring legacy of founder of
Kumaraguru Institutions, Dr. N.Mahalingam Aiya, plays a pivotal role in emphasizing the
importance of Tamil language and culture in the age of Al. Founded with a vision to advance
research and scholarship in Tamil studies, the Center stands as a testament to the unwavering
commitment to preserving and promoting the Tamil language in the digital era. The founder's
enduring passion and dedication to Tamil studies serve as a guiding light for the institution,
inspiring generations to delve into the language's rich history, literature, and traditions, and to
harness the power of Al in language preservation and understanding. The significance of the "Al in
Tamil Language Computing" topic lies at the intersection of preserving cultural heritage and
embracing cutting-edge technology. Tamil, one of the world's oldest languages, boasts a rich literary
tradition and an extensive global community. The application of Al in Tamil computing not only
enables effective communication and information access for Tamil speakers but also safeguards
and rejuvenates the language's historical and cultural value. The future of this topic promises
groundbreaking advancements in natural language processing, machine learning, and data-driven
language preservation. As Al continues to evolve, it will play an integral role in language
revitalization, machine translation, and knowledge dissemination in Tamil, ultimately fostering
global understanding and cooperation. The synergy between Al and Tamil computing presents an
exciting frontier with far-reaching implications for linguistic diversity, technological innovation,
and cross-cultural communication. It is an area ripe for exploration and investment, offering
immense potential for enriching our digital world and preserving linguistic heritage for generations
to come. This conference brings together experts, scholars, and practitioners in the fields of Al and
Tamil computing for deep discussions, presentations, and shared experiences thatwill enrich our
collective understanding of these intersecting domains. The conference will serve as a catalyst for
groundbreaking research, collaborations, and the exchange of profound insights. The knowledge
disseminated here will reverberate in the academic and technological realms for years to come.

Dr. Vijila Edwin Kennedy
Principal, KCLAS.



Greetings from Chairman, INFITT

S 6OTL6ITET {6MLOLILITETT&6T, LIBICSHMLIMETISH6T oM mID
AlBHBaTTHEGar! 2 WHSSHD  FHHaeh QFHTPLHIL LI
DesTMLD (INFITT) LDMHMID 15607 2 MILILN6TT&H6T FMyLmss, 2013
&HCLMTUT 13 6oTm GHTWIDLSSETHl6L BemL QUMM "SLolLp&
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FHeval LDMHMID H8&6U QGITLFL| (NGH6V 600180 LDMHMID HSMHEGS LTV LILGaumI
Slemmaerflev QFWMend Hevoreoormle] DMHMILD SLOLD & evofleofluledT 6p(HMISH eme6voTLIL]
LL&Aemw ghUBSSID ID&SSTET A,MHMemeVs 6&meoor(heTemgl. @ bh&LI &6msH 60
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umymrlL@ee o fluemel. @bs biswellsdr GUME SHIGET  mleneaiu]n
BlevotreooTMlemeU D LITGIG6TlESE emersdH gl LIMIGHMLIMETISH6T, Qb F MUIES UTeTF&s 6T
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Qb5 SlemMUT6L GLILD PETCRTHMMEISEHSHES ULl UGS SI6TeTSI.

@bs Blapaler Qaimmlenulds Q& meor_mHIWD Ceauemeruilev, Q&AL EHIL LD WDMHMILD
QUMY wHweamMled 2 6T6m UMM FTHEH LSS MNEHEET T TUIIH 6V
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Greetings from HOD, Tamil Department
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Advancements in Tamil Computing: Shallow Parsing to Machine
Translation

Parameswari Krishnamurthy
Language Technology Research Centre
International Institute of Information Technology- Hyderabad
<param.krishna@iiit.ac.in>

Abstract

This paper provides a comprehensive overview of the evolving landscape of
Tamil computing, spanning from the foundational concept of shallow parsing to
cutting-edge developments in machine translation using different techniques spanning
from Rule-based to Machine Learning approaches. Tamil, with its rich linguistic
nuances and intricate morphology, presents unique challenges and opportunities in the
realm of computational linguistics. Through this journey, we will explore how shallow
parsing techniques have been instrumental in understanding and processing Tamil text,
and then delve into the transformative potential of machine translation for bridging
language barriers and promoting cross-cultural communication.

1. Introduction:

Tamil boasts a rich literary and cultural heritage. Over the years, advancements in
computing have played a pivotal role in the development and enhancement of Tamil
language processing. From shallow parsing to machine translation, the journey of
Tamil computing has been marked by remarkable progress. This paper discusses the
key requirements in Tamil computing, emphasizing the need for shallow parsing
techniques to contemporary machine translation systems. There have been numerous
endeavors dedicated to developing technology tools and applications for the Tamil
language (Rajendran, S., et.al, 2018). Several educational institutions, independent
researchers, Tamil enthusiasts, as well as national and international companies have
been dedicating years of effort to develop technology for the Tamil language. There is
a great significance of shallow parsing in agglutinative languages like Tamil which has
a unique morphological structure where words are constructed by combining multiple
morphemes or affixes. Understanding and extracting these morphemes are pivotal for
various language processing tasks.
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2. Shallow Parsing in Tamil Language Processing

Shallow parsing, is an initial step in language processing, involving the
identification of tokens, parts-of-speech and finding out the phrasal units or "chunks"
within sentences. In the context of Tamil computing, early efforts were dedicated to
developing shallow parsing algorithms to extract meaningful linguistic units like noun
phrases, verb phrases, etc., from Tamil text.

Researchers employed rule-based approaches and linguistic heuristics to
achieve this, creating the foundational groundwork for more sophisticated language
processing techniques.

2.1. Tokenization and Multi-Token word segmentation:

Tokenization in Tamil, as in any language, involves breaking a text into
smaller units called tokens. These tokens can be fully formed words, subwords,
characters, or phrases, depending on the granularity of analysis. Spaces within written
language play a critical role in token identification. However, in Tamil, there are
frequently occurring multi-token words (MTW) that necessitate segmentation for
subsequent processing steps. Examples:

Determinar+noun: @LILIGE) [ @)L (this)’, ‘LI& (part)’]
noun+verb: @)L_IOME&LO [ @)L 1D (place)’, & L0 (is)’]

MTW tends to add multiple grammatical pieces of information within a
word and cannot be identified with a single POS. A token status is required for further
analysis.

2.2. Morphological Analysis:

Morphological analysis is a crucial component in Tamil language processing.
Morphological analysis involves breaking down words into morphemes, aiding in
understanding word structures and inflections in Tamil. Inflections, being modifications
or additions to a word, impart crucial grammatical and contextual information. For
instance, in Tamil, verb conjugations, tense markers, case markers, and gender
agreements are often expressed through inflections. By recognizing and analyzing these
inflections, we can unravel the syntactic and semantic nuances embedded within the
language, enabling more accurate and insightful language processing. Using universal
dependency morph features, the following features are crucial which are realized as
inflections within word in Tamil.
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Type Features Values

Pronominal type PronType Personal (Prs), Reflexive (Rfl), Reciprocal (Rcp),
Interrogative (Int), Relative (Rel), Indefinite (Ind)

Numeral Type NumType Cardinal (Card), Ordinal (Ord), Fraction (Frac)

possessive Poss Yes

reflexive Reflex Yes

foreign word Foreign Yes

abbreviation Abbr Yes
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Wrong spelling Typo Yes

gender Gender Masculine (Masc), Feminine (Fem), Neuter (Neut)

animacy Animacy Animate (Anim), Human (Hum), Inanimate (Inan)

Number Number Singular (Sing), Plural (Plur)

Case Case Nominative (Nom), Accusative (Acc), Instrumental
(Ins), Dative (Dat), Ablative (Abl), Allative (All),
Benefactive (Ben), Comitive (Com), Locative (LLoc),
Genitive (Gen), Vocative (Voc), other Oblique cases
(Obl)

definiteness Definite Definite (Def), Indefinite (Ind)

Verbal form VerbForm Finite (Fin), Infinite (Inf), Participle (Part), Gerund
(Ger), Converb (Conv)

mood Mood Indicative (Ind), Imperative (Imp), Conditional (Cnd),
Potential (Pot), Desiderative (Des), Necessity (Nec)

tense Tense Present (Pres), Past (Past), Future (Fut)

aspect Aspect Progressive (Prog), Perfective (Perf),

voice Voice Active (Act), Passive (Pass), Causative (Cau)

polarity Polarity Positive (Pos), Negative (Neg)

person Person 1,2, 3

polite Polite Formal (Form)

clusivity Clusivity Inclusive (In), Exclusive (Ex)

Table 1: Morph Features in Tamil
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We aim to build a context-aware morphological analysis that involves analyzing
the structure of words in a sentence while considering the surrounding context. Table-2,
the row “morph” provides the example features on context-sensitive morphological
analysis.

2.3. Part-of-Speech Tagging:

Part-of-speech (POS) tagging assigns grammatical categories (e.g., noun, verb,
adjective) to words, facilitating further analysis and understanding of sentence structure.
These analyses serve as essential building blocks for subsequent natural language
processing tasks. We have used the following tags while annotating Tamil texts with POS
categories:

Open class categories: ADJ (adjective), ADV (adverb), INTJ (interjection), NOUN
(noun), PRON (pronoun), VERB (verb),

Closed class categories: ADP (adposition), AUX (auxiliary), CCONJ (coordinating
conjunction), DET (determiner), NUM (numeral), PART (particle), PROPN (proper noun),
SCONIJ (subordinating conjunction),

Other: SYM (symbol), PUNCT (punctuation)

The table 2, the row “pos” provides the example of POS information of tokens.

2.4. Chunking:

Chunking involved grouping smaller units or constituents in a sentence to understand their
phrasal structure. This method helps to identify phrases and their relationships, providing
valuable insights into syntax and language comprehension. The example chunk output is
given here:

(1) (/B/T60T)_NP (2//5& 1/ 1600T6076007T)_NP (& 6076007 (L/L_60T)_NP
(LTS5 E6NVM.

3. Syntactic Parsing for Tamil:

Building a parser is a challenging task as it deals with structural ambiguities in languages.
Structural ambiguities are realized due to two different factors; (i) attachment ambiguity
and (i1) coordination ambiguity. They are illustrated in examples (2) and (3) respectively:

(2) prr697 255 1111697696007 (5,5 69 GOOTULYL_GOT L1175 55 GO

“I saw the girl with a horse’
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(3) owwsrerr 2469975 @FLL LILIGITSGIFLO GUBSHTTH .

‘Old men and women came’

In the example (2), the attachment of the associative case marked noun phrase (NP) (the
horse) shows an ambiguity as it can be potentially attached/associated with the subject NP
(nan ‘I’) or with the object NP (pen ‘the girl’). In example (3), the coordination ambiguity
is shown where the adjective ‘old’ may have been interpreted to be coordinated with either
‘men’ or ‘women’. The parser attempts to resolve such structural ambiguities based on
various factors such as morphological, syntactic, semantic, contextual and discourse
knowledge of a language. Once ambiguities are identified, the parser attempts to choose
correctly parsed output with the given knowledge. The annotated treebank of Tamil data is
given in Table (2) with colums token number (tkn_no), token(tkn), parts-of-speech (pos),
morph features(morph), relation token (rel_tkn) and syntactic relation (syn_rel).

#lext= gmenian wenaell 5\3')'6,(-1‘)71; [JITEU &I &1 @)mmm&&@% 8{_:‘"&15 Ligenmmen

tkn_no tkn pos morph rel_tkn syn_rel
1 gmosflen PROPN Case=Gen)Gend=Masc/Number=Sing 2 nmod
2 Lot NOUN Case=Nom|Gend=Fem|Number=Sing 3 appos
3 Feragsmu PROPN Case=Acc|Gend=Fem|Number=Sing 6 obj

4 (eI PROPN Case=Nom|Gend=Masc/Number=Sing 6 nsubj
5 Blamera.ags PROPN  Case=Dat|Gend=NeuNumber=Sing 6 oblto
6 o586 VERB Polarity=Pos|VerbForm=Conv 0 root

7 Qe mnen AUX  Gender=Masc/Number=Sing|Person=3 6  aux

Tense=Past|VerbForm=Fin
8 : PUNCT PunctType=Peri 6  punct

Table 2: Example for Tamil Syntactic Treebank

4. Implementation methodology of Shallow Parsing and Syntactic Parsing

There are lots of off-the-shelf machine learning algorithms available in training parsers.
One of the recent algorithms which reported with reasonale accuracy is Trankit (Van
Nguyen et al, 2021). Initially, we would like to explore this algorithm and customize it to
the need of Tamil parsing. Trankit is a lightweight Transformer-based Toolkit for
multilingual Natural Language Processing. It delivers a trainable pipeline for fundamental
NLP tasks for over 100 languages and 90 pretrained pipelines for 56 languages. The Trankit
toolkit outperforms prior multilingual NLP pipelines over sentence segmentation, part-of-
speech tagging, morphological features tagging, and dependency parsing while holding
competitive performance for tokenization, multi-word token expansion, and
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lemmatization. The memory usage and speed are efficient despite using large pretrained
transformer models.

|npu(: Taemil Sentence

’ Join Token snd Sentonce \
Splitter

Mudti-word Token
Expander
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M e o e o e e e e - - - - o o @

-
-

’
’
.

-~ -
T mmmmmmm----- - .-

v

Output: Tamil Parsed Outpes

Figure-1: Architecture of Parsing
5. Importance of Parsers in Neural Machine Translation involving Tamil:

Machine translation involves translating text from one language to another using computational
algorithms. In the context of Tamil, machine translation has seen significant advancements in
recent years. Early machine translation systems relied on rule-based approaches and linguistic
knowledge. However, with the advent of neural machine translation (NMT), Tamil translation
systems have become more accurate and contextually relevant. NMT leverages deep learning
models to translate sentences and has drastically improved the quality of translation in both written
and spoken Tamil.

Parsers play a crucial role in Neural Machine Translation (NMT) by aiding in the understanding
and analysis of input sentences and their subsequent conversion into target language output.
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Here are some key points highlighting the importance of parsers in NMT:

Syntactic Understanding: Parsers help in analyzing the syntax and structure of sentences,
identifying relationships between words and phrases. This understanding is essential for
generating coherent and grammatically accurate translations.

Semantic Representation: Parsers assist in capturing the semantic meaning of the input sentence.
Understanding the meaning of the sentence allows the NMT system to produce more contextually
relevant and accurate translations.

Improved Word Alignment: Accurate parsing helps in aligning words and phrases between the
source and target languages. Proper word alignment is critical for generating precise translations,
ensuring that words are appropriately matched based on their meanings and positions.

Phrase Extraction and Chunking: Parsers facilitate the extraction of phrases and chunks from
the input sentence. These chunks can be translated more effectively, enabling the system to
generate natural and fluent translations.

Handling Ambiguity: Natural languages often have ambiguous sentence structures. Parsers help
in disambiguating such sentences by analyzing the context and providing the most probable
syntactic and semantic interpretations. This is particularly vital for generating accurate translations
in the presence of ambiguities.

Error Detection and Correction: Parsers aid in identifying errors in the input sentence, such as
grammatical mistakes or inconsistencies. This allows the NMT system to produce more refined
translations by detecting and correcting errors in the source text.

Incorporating parsers within the NMT framework enhances the system's ability to comprehend
the input text at a deeper level. This deeper comprehension, facilitated by syntactic and semantic
analysis, significantly contributes to the production of higher-quality and more accurate
translations in neural machine translation.

6. Conclusion:

Advancements in Tamil computing, from shallow parsing to modern machine translation, have
transformed the landscape of Tamil language processing. The progress made in shallow parsing,
including morphological analysis, part-of-speech tagging, chunking and syntactic parsing, and
semantic parsing has laid the foundation for robust language understanding. Furthermore, the
introduction of neural machine translation has significantly enhanced the accuracy and fluency of
translating Tamil text, enabling better communication and collaboration in a globalized world.
Within Neural Machine Translation (NMT), parsers have a significant impact, contributing to the
interpretation and analysis of input sentences, thus influencing the quality of the resulting
translation in the desired target language. For Tamil, a language renowned for its morphological
complexity, leveraging shallow parsing and syntactic parsing are not merely a choice but a
necessity to unlock the true potential of language technology applications and enhance
communication in the digital realm.
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1.Introduction to Generative Al for Tamil Language

Generative Artificial Intelligence (AI) has made remarkable strides in natural language processing
and generation, enabling machines to understand, generate, and manipulate human languages. One
of the exciting applications of generative Al is its ability to work with languages beyond the
commonly spoken ones, such as English. In this two-page summary, we will explore the
significance and developments of generative Al in the context of the Tamil language.

Tamil is one of the oldest and classical languages in the world, with a rich literary heritage. It is
predominantly spoken in the Indian state of Tamil Nadu and Sri Lanka, with a significant diaspora
worldwide. The utilization of generative Al for Tamil holds immense potential for a variety of
applications, including content generation, language translation, chatbots, and more.

2.Development of Tamil Language Models

The foundation of generative Al for Tamil begins with the creation of robust language models,
similar to models developed for English. Large Language Models like GPT, BARD have made
significant strides in advancing the capabilities of Al models for various languages, including
Tamil. Training language models on vast corpora of Tamil text, encompassing both contemporary
and classical literature, has allowed these models to understand and generate Tamil text with
impressive fluency and coherence.

3.Applications of Generative Al for Tamil Language

Language
Translation

1.: Generative Al has greatly facilitated Tamil-English and English Tamil translation. These
models can produce highly accurate translations, aiding in cross lingual communication,
content localization, and accessibility.

Content
Generation
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2.: Content creation, whether for articles, marketing materials, or creative writing, benefits
from generative Al. Al-generated content in Tamil can be a boon for businesses and
individuals seeking to produce content efficiently.

Chatbots and Virtual
Assistants

3.: Conversational Al powered by generative models can provide intelligent and context-
aware responses in Tamil. This is valuable for customer support, virtual assistants, and
other interactive applications.

Language
Learning

4.: Generative Al can assist in language learning by generating exercises, quizzes, and
practice sentences in Tamil, making the learning process more engaging and
personalized.

Text
Summarization

5.: Summarizing lengthy Tamil texts or news articles can be automated using generative
models, saving time and effort for readers and researchers.

4. Challenges and Considerations

While the development of generative Al for the Tamil language is promising, it also comes with
several challenges:

Data
Availability

1.: Access to large and diverse datasets is crucial for training effective language models.
For Tamil, ensuring a sufficient amount of high-quality text data is a challenge.

Bias and
Fairness

2.: As with any Al system, addressing bias and ensuring fairness in generative Al for
Tamil is essential to avoid perpetuating stereotypes or promoting harmful content.

Resource
Intensity
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3.: Training and deploying generative Al models can be computationally intensive,
which may limit accessibility for smaller organizations or individuals.

Evaluation
Metrics

4.: Developing appropriate evaluation metrics for Tamil language models is essential to
measure their effectiveness accurately.

5. Conclusion

Generative Al for the Tamil language is a significant step forward in harnessing the
power of artificial intelligence to enhance various aspects of Tamil communication,
education, and content creation. As Al research and development continue to
advance, we can expect even more sophisticated and tailored solutions for the Tamil
language, further promoting its preservation and growth in the digital age.

6. Future Prospects and Recommendations

The future of generative Al for the Tamil language is promising, and there are several
areas where further development and attention are needed:

Data Collection and Curation

1.: Efforts should be made to collect and curate diverse and high-quality datasets in
Tamil, spanning different domains and registers, to improve the training and
performance of language models.

Community Engagement

2.: Collaboration with the Tamil-speaking community, including linguists, writers, and
educators, is essential in shaping the development of Al systems for Tamil. Their
expertise can ensure culturally sensitive and accurate language generation.

Ethical Guidelines

3.: Establishing ethical guidelines for the use of generative Al in Tamil is vital.
Transparency, fairness, and accountability should be at the forefront of Al
development.

Accessibility

4.: Making generative Al tools and applications for Tamil accessible to a wider
audience, including those with limited technical expertise, should be a priority.
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Multimodal Integration

5. : Expanding generative Al to support not only text but also speech and visual
inputs can enhance its utility in various applications, such as video subtitles, voice
assistants, and image captioning.

In conclusion, generative Al for the Tamil language has the potential to
revolutionize how Tamil content is generated, translated, and interacted with in
the digital age. While challenges exist, continued research, collaboration, and
community involvement can lead to the development of powerful and ethically
sound Al systems that benefit the Tamil-speaking population and contribute to the
broader field of natural language processing.
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Introduction:

Large Language Models (LLMs) and correspondingly building vector databases in
the recent time produced appealing advances in enabling machines to behave like humans.
Linguists can play a vital role in training LLMs by using many linguistic theories such as
lexical semantics, semiotics and so on to identify and account for complexities in meanings of
words and expressions so a much more robust use of this research can be achieved. For
example, the Tamil word "pati" has multiple meanings, such as "to read", "to settle", “step”,
“a measuring container” and so on. Not only the homonymous words but also extended
meanings of expressions as in vayiru erikiratu to mean both ‘burning sensation in stomach’ as
well as ‘feeling hurt mentally due to unusual attitudes of others’ would also pose problems for
machines in parallel to how humans understand the natural language. A linguist could help an
LLM to be trained with such nuances of expressions so a live interpretation can be achieved
by machines. Such efforts would allow the machine to interpret dialogues in a more
meaningful manner than now. Prediction and probabilities within complex linguistic
structures need to be accounted for more comprehensively than before in order to design
plausible and life-like machine-human interactions. Linguistic theories have traditionally
focused more on structures than on the bidirectional predictability of words or even sentences,
which is what systems like BERT and GPT attempt to do (Cf. Noir 2020). An attempt is made
here to demonstrate using a robot as to how the recent developments of NLP can be
implemented and tested for Tamil.

Recent Advances in NLP tasks and development of a Robot:

With an extensive research and plausible outcome from many open-source projects
such as text to speech, machine translation, Wiki-resources and speech to text, it is now quite
possible to integrate them into a mini-robot type of machines and converse to them in a natural
way. This project aims at a similar effort with a robot and attempts to converse in Tamil with
it. The activities include commanding the robot to move around such as forward, backward,
circle around and so on with commands in Tamil, like (wparenmev Gunmis, Heresmev cummis,
#551mi%, respectively.  This system also can be trained with particular set of movements and
use later to perform them using commands in Tamil. For example, navigating from one place
to another can be recorded in sequence and link it to commands such as gewwwwmDsG
Cunmis, semwwwapsd Cumiil'® eumsis and so on so forth, so these commands will call
the routine that was trained earlier. The robot that was built earlier and is demonstrated in
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http://robot.tamilnlp.com extensively uses a voice recognition card called EasyVR and its
speech to text capability is restricted to a single person. Whereas, the current project employs
Google’s text to speech and speech to text APIs extensively and attempts to process Tamil
voice in a natural way independent of the speaker. The issue with this project, however, lies
in the way the parsing of Tamil sentences is done in a meaningful manner, so the machine can
respond with its text to speech API. What is crucial is the processing task of the text obtained
between the two processes namely speech to text and text to speech. The speech to text API
attempts to convert most of the spoken Tamil expressions into corresponding literary text.
What is of utmost importance is that one needs to find the input and output of this API with a
set of data and analyze the commonalities, so the processing task can be done efficiently. For
example, the output griser CumTuisCsTe(® Q) BSHPIFH6TT, BEISOT BIOGTSES GIGH L W

L HSG o mS@pDL W LSS550F IHS&H% Glasmeaa® eumaiisert are interpreted from
the corresponding literary form of the speech. However, the spoken form of the output s
BIOTEHS@ e1aiCarn af L HF@ 2.ms Lsss5m5 IBSSHIL(H a@paimsartrequires special
attention. The word prewerg® is understood/interpreted as prewanrs@, THSHSHL B 1S
interpreted as er®FaL_®. When these words are uttered separately, Ligdss@L @,
T (h35$5 L are produced as output with “£4" in them. Strangely, when these words are
included as part of a sentence the output produces only e1®g&L_® as in 2 ws L5F5FF
a®ssIL® eaumpaimsert. Obviously, this kind of analysis needs to be done with a large set of
expressions and a common feature of the output from this application needs to be arrived at,
so further processing of the output from speech to text API can be possible. Particularly, this
kind of study is needed for applications like question/answering systems, database retrieval
systems and so on.

Using the Wiki resources in Tamil:

When interacting with the Wiki resources, an attempt is made to parse sentences with the word
“ug®' and the API to Wiki resources is called. Following are some of the interactions and results
from this device:

Input: 3 LSS OCeFrTeEIS:

Output: 5 s @@ sy, 2 SWHS avLTelear pYss T10R QusssHad Oeualeups
SO ST - BFEREMS FeogUuL Ld. @QEFewgUuL P  swrfliunerd, o FwpG

QO L_TGOGET, S MBTUIGGTTH Y W)(LPS LD TGS

Input: Guwrgnm soarf LSS Glaredeymis

Output: guwrgnmn sl us sl GCsremaulesd yewpHerar &  Seiwmg
Qumpuiwed seveprfl. 1984 opb gyer® OsmTLmsliul L Qasedard #59 cuenils &LpLoH et
Q@ uToneTEs Sy FHeTTi YMESL L earuleTTed Bl(HeuUSHSHLILIBF DI

Although the second query and result seem to be desired, the first query and result
requires attention as the text from the query and result do not have any direct link in
any of the phrases within the output. However, the input @ %60 sewewrmg LSS
Gerevamis does indeed produce the same output as above. Except for such minor
issues, accessing API resources from Tamil Wiki offers a good result for the names
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of towns, institutions, projects and so on.
Input: wulewr@gieop LYY CFTaaymis:

Output: wulewr@genp (Mayiladuthurai) (gpery wrweugd eIy Y@ PSSLILIL L G)
@rHurailed, sOPHETE  wIBWEH® wWllwT®gedn I L FFH® o aTeT  BlIuTss
seweveouilL_(LpLd, FpLiLy Flewev BHITLFuD GLd. wullevgsar GO SHOD  6TRTLIS T
wllewrhFieon 61T HeLPSHLILIBF DS

Input: wgiewg L 16 LPP CFTOGBIS:

gy s QesHwu  lear  Csrglys @S (Project Madural) erernig s
@wsHwmsmarn, QemearugsHd QewasFons CealulGw, @b BDES, SETeTTio, 2 WahaTTal
wupurgs. 1998 oyib oyew®), Qurkse Sagseamy, OSTLBISLILL L QSH L L LD,
@aparailed OFTLipgk QuES uUBHDSI.

Translation resources:

Google’s translation resources are incorporated in this device and the commands such as a5 ® 0l
QFravaImIs, awrasgiev CFTeddImS, st OFreayms etc., followed by any sentence

in Tamil is translated to the corresponding target languages. Following are some of the outcome
from this device:

aflp@Pev GleFTade)mis

Rt # @38

hindee mein kahen

BrIs@pd 2 m% SO Brenerda@ eTarGertl ofl BhE@ FTlL eufBisenT
T qH 3R TR HIE & A o8 WHOF Y ARTER 313

kya tum aur tumhaara bhaee kal raat ke khaane ke lie mere ghar aaoge?

s poewr GUs eugpom

T MY 0BT qfe did Fhdg?

kya aap achchhee tamil bol sakate hain?

BEs ereorhd QBHwrayev TE0SES QL s CUru @)wmssmisearay
Qe L GlFredBmISenT

T Y GIOEAT Ihdle b 3T It YR & &gl oo

kya aap mujhe bata sakate hain ki aap sabhee bhaarat mein kahaan gaye hain?

FTL_Tev OFTOR) MBI

FTIBON® DOTI) Y

Kenadiyan endu héli
Bris prewers@ ereiCeari afl H&@ eufmisart

V¥ I3, 2OIN WB23La3e?

Nale nanna manege baruttiya?
bmis sremevullev FmLiLm(® FaLIL e miEerT

A5 39N, 300D LT0?
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Nivu beligge tindiddira?

The “speech to text” system converts input voice into Tamil text and the translation API translates
the respective text to corresponding target language and outputs in the respective script.
Correspondingly, the output text is both recorded in the database and converted to corresponding
voice using the “text to speech” application. Each of the target language text as given here are
uttered by the text to speech engine API correspondingly by exploiting all of the resources.

Accessing online text databases:

It’s quite possible to access online literary databases and convert them to voice as well as text with
these resources. Following example shows how this device is used to access online Thirukkural
databases:

Input: gpaer 52:

Output in both text as well as in voice: 52. Qur@ert & CurPpprsTisE Qeemev oywHarTL &
QBB 2IGFIPGT LIufsEG. Ourmmer L'H Curpprismise @)evenev)LITBaTTed L6
Car_cd YLl LMSHSTUTSTISEG QVM6V; YEIG BT YL & 26T FHTLICITHEHS% S
Qs Gumew ymperrer Lwer GasTL_cd 2016 FHRTLMIFE@FSG Qevene. laTssHLd
(QurpLuwer QuUesp@&s smyewitd smeureml] Gume, Bl LW QUSSD& 2aear Fearesed
FagessiLd eTaTLSTUIDM). 2a16sr Fesrpmgmuilenid o uflisl’ @ @b SEIGLD BleOTWTSTIHG (6T
2OTEDG QpsS Qevewew erameny Unigs, o0%s 2@k eIaiug  Qeveu  @)uess(h
url L meih FapLitil’L g).)

System resources and converting them to Tamil speech:

Besides the above online resources, it is also quite possible to interact with the system resources
such as time and date and have this device record in text as well as speak it in Tamil as shown
below:

Input: @dis Uewfl eresres
Output: @uiQurups US55 Sps@ Crow Urewe o1’ () Uewfl eaitigy Bldl b @ibLigg
RN QA GTTLY

Input: Qerewens g eraienr Gz

Output: Qarenps @ QuesiLTuIss Q)BLUSSH APHTIDIpLD UL LD USHHD Uisd LiGer
RITDIYLD  BTGT

In order to convert Tamil numbers to corresponding Tamil text the resource from
http://robot.tamilnlp.com/py/convert_tamil_number.py is extensively used as part of this device.

Conclusion:
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With this initial analysis with a robot on the speech to text and text to speech resources that are
available online, an attempt is made to test the performances of the robot (cf. Renganathan 2022)
in a multiple number of ways. What is yet to be attempted, but in the process of being developed,
is the process of analyzing output text from speech to text resources in a meaningful way to build
some of the NLP tasks such as question-answering systems, man-machine interactions along the
line of natural conversations and so on. Attempting to decipher the correct interpretation of
commands involving ambiguous words would be a challenging task. As already mentioned, such
tasks can be accomplished only when the training is made with extensive database containing all
possible bi-directional predictable expressions. Capturing the nuances of expressions involving
homonymous words, semantically extended phrases etc., are to be accounted for in a precise
manner possible so further advances can be made. Such projects would mainly explore the
intersection between the theoretical knowledge of linguistics and the linguistic performances
related to the recent advances of Al particularly in the context of building LLLM and development
of vector databases. Obviously, as one can see that the linguistic performances of AI models such
as Bard, Chat-GPT have made enormous successes mostly without the application of much of the
knowledge from theoretical linguistics, but the outcome of these models, as has been cited in this
work, requires proper application of linguistic theories further so a desired and most plausible
outcome can be arrived at.
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The Impact of Large Language Models (LLMs) on the World
Dr. Uthayasanker Thayasivam
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Large Language Models are powerful artificial intelligence models that have seen significant
advancements in recent years. These models are trained on vast amounts of textual data and have
the ability to understand and generate coherent responses to natural language queries. These
models are designed to understand and generate human language, surpassing human-level
performance in various language understanding tasks. These models, built on deep learning
techniques and trained on large-scale textual datasets, have the ability to understand and generate
coherent and contextually relevant responses to linguistic queries.

Large Language Models have had a transformative impact on various fields, revolutionizing the
way tasks are planned and completed. In the field of natural language processing and chatbots,
LLMs have enhanced the capabilities of chatbots, making them more human-like in their customer
interactions. By processing natural language input and generating words based on the data seen,
LLMs have made chatbots more efficient and responsive. Large Language Models have also been
used in the field of robotics for task planning©2° ¢t al2022) Tagk planning with Large Language
Models has been shown to assist robots in learning novel activities and completing complex tasks.
Furthermore, LLMs have proven to be effective in providing high-level semantic knowledge about
the physical world and common human activities.

In the future, LLMs have the potential to reshape various fields. In the field of healthcare, LLMs
can be utilized to improve medical diagnosis and treatment recommendations. (The promise of large
language models in health care - The Lancet, n.d)B v analyzing large amounts of medical literature and patient data,
LLMs can provide valuable insights and assistance to healthcare professionals. In the field of
education, LLLMs can be used as powerful tools for language learning and personalized tutoring.
By understanding and generating natural language, LLMs can create interactive learning
experiences tailored to individual students' needs. In the field of journalism, LLMs can assist in
generating news articles and analyzing vast amounts of information to uncover meaningful
insights. These advancements in LLM technology have the potential to revolutionize the way news
is created and consumed.

While Large Language Models offer significant potential in various fields, their implementation
also poses several challenges. One of the main challenges is the issue of hallucinations.
Hallucination refers to a problem where LLLMs generate responses that are not based on factual
information but rather on patterns learned from the extensive training data. This can lead to the
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generation of false or misleading information, which can have serious consequences in fields such
as journalism and healthcare. Additionally, the sheer size and computational requirements of
LLMs pose challenges for their implementation. Training and deploying Large Language Models
require substantial computational resources and infrastructure, making them less accessible to
smaller organizations or research institutions with limited resources.

Another challenge is the issue of bias in LLMs. Bias in LLMs refers to the tendency of these
models to reflect and perpetuate biases present in the training data. In the case of language models
trained on text from the internet, biases in the data can be amplified and reinforced in their outputs.
This can lead to biased and discriminatory language generation, which can have negative
consequences in various domains, including healthcare, law, and social discourse.

LLMs hold great potential for advancing the field of linguistics. These models can be used to
analyze and understand linguistic patterns, including syntax, semantics, and discourse structure.
By training LLMs on extensive linguistic datasets, researchers can gain insights into language
usage and evolution. For example, LLMs can be used to study language acquisition and
development, as well as how different languages vary in their structure and usage. Furthermore,
LLMs can assist in language translation and interpretation tasks. They can be trained on bilingual
or multilingual datasets to improve the accuracy and efficiency of translation systems.

One of the notable impacts of Large Language Models is in the realm of low-resource languages.
These languages, which have limited textual data available for training language models, often
face challenges in developing accurate language processing tools. However, LLMs have the
potential to bridge this gap by leveraging the vast amount of data available in major languages and
transferring knowledge to low-resource languages

Large Language Models have the potential to greatly impact local languages and address some of
the challenges faced by low-resource languages. By training LLMs on larger languages, such as
English or Spanish, and then transferring the knowledge to local languages, these models can assist
in developing accurate language processing tools for local languages. This can have several
implications: increasing accessibility and inclusivity, preserving linguistic diversity, and
promoting cultural heritage. Increasing Accessibility and Inclusivity: LLMs can help improve
accessibility and inclusivity by providing language processing tools for local languages.

The utilization of Large Language Models raises important ethical considerations that must be
taken into account. Firstly, there is a concern regarding biased data and biases within the models
themselves. Language models are trained on massive quantities of text data, which can reflect
biases present in society. These biases can be perpetuated and amplified by the LLMs, leading to
potential discrimination or unfairness in their outputs. Additionally, there is a need to consider the
privacy and security implications of LLMs.
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The data used to train Large Language Models often consists of user-generated content, which
may include personal or sensitive information. The impact of LLMs on different fields is
transformative. In the field of healthcare, LLMs can assist in clinical decision-making by providing
recommendations or generating patient reports. However, the use of LLMs in healthcare raises
concerns about patient privacy and data security.

Furthermore, LLMs raise concerns related to accountability and transparency.

It is important to understand how these models make decisions and generate responses, especially
in critical domains such as healthcare. Without proper transparency, it can be challenging to
identify and address potential biases or errors in the outputs of LLMs. These ethical issues
surrounding the use of LLMs highlight the need for careful consideration and robust guidelines.

One possible use case for LLMs in linguistics is the study and analysis of Tamil language. Tamil
is a rich and ancient language with a long literary tradition. However, due to the complexity of
Tamil grammar and the lack of comprehensive linguistic resources, studying and understanding
the language poses challenges. LLMs can be leveraged to develop language models specifically
for Tamil, allowing researchers to analyze and generate text in the language.
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INTRODUCTION

The recent advancements in the Artificial Intelligence (Al) industry, specifically in the Natural
Language Processing (NLP) domain, primarily focus on English and other languages that use Latin
script due to the abundance of data, active research community and evaluation benchmarks. But
there are nearly 7,168 modern living languages around the world as per the 26th edition of
Ethnologue. Tamil is one of those morphologically rich classical languages of the world continuing
to withstand the test of time. In spite of the availability of rich literary works, exclusive NLP
models have never been built for Tamil. The objective of this paper is to address how the Tamil
community can collaborate and build exclusive Tamil Al overcoming the challenges and technical
difficulties.

OPEN CHALLENGES

There has been a growing awareness of the need for diversity in language representation in NLP.
Researchers are increasingly working on extending NLP models to support a broader range of
languages and scripts. There are efforts to develop multilingual models that can understand and
generate text in multiple languages. The following are some of the challenges involved in building
Tamil Al

i. Data Curation: The existing SOTA multi-lingual models and Large Language Models (LLM)
use different datasets that contain Tamil subset collected from Wikipedia, websites, books and
online forums with little to no human validation. Tamil language has vast amounts of literature,
some of which is digitised through open-source projects like Project Madurai. This digitised data
should be leveraged to create task-specific datasets after being carefully curated and validated by
linguists, and NLP experts who are well-versed in Tamil.

ii. Performing Fundamental Research: Tamil is a morphologically rich language which is
agglutinative in nature. Most of the SOTA models’ tokenizers and encoding schemes do not work
well for Tamil because of the grammatical differences between English and Tamil. Though
existing model architectures can be used as is for any language, fundamental components like
syntactic trees, shallow and deep parsers, tokenizers, stemmers, lemmatizers and special encoding
schemes to create embeddings need to be created specific to Tamil. Fundamental research has to
be carried out to build better exclusive models for Tamil.
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iii. Fostering Open Source Projects: Projects like Bhashini, and Al4Bbharat that aim at curating
high-quality datasets for Indic languages and building SoTA Indic base models should be given
utmost importance. Fostering such projects will help us build exclusive Indic language models,
including Tamil models. Aya by Cohere for Al is another open science initiative aimed at curating
high quality datasets for 101 underrepresented languages of the world and building a better
multilingual model.

THE ROLE OF COMMUNITY

Efforts should be undertaken to bring together the community of researchers, linguists, NLP
experts, volunteers and language enthusiasts. The community can be supported through grants and
funds to cover the infrastructure costs involved in developing new models and be incentivized
based on their needs. Incentives can be monetary, authorship, digital certificates, swags or anything
that could be of value to the different groups.

CONCLUSION

By addressing the different challenges, the community will be able to contribute better to the Tamil
ecosystem and help the language co-exist and evolve with technological advancements.
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Tholkaappiyam, an ancient Tamil grammar work penned by Tholkaappiyar around 2700 years
ago, is a monumental literary and linguistic treasure that continues to hold immense significance
for the Tamil language and its speakers around the world. While it is often classified as a grammar
book, its relevance extends well beyond the confines of mere linguistic analysis. This abstract aims
to shed light on the unique attributes that categorize Tholkaappiyam as a scientific record of
linguistics and culture, providing valuable insights into the Tamil language's structure and
evolution.

This study employed a library research methodology, with an emphasis on a meticulous
examination of the text itself. Data was exclusively sourced from the verses of Tholkaappiyam,
referred to as NuRpaa research findings presented herein conclusively establish Tholkaappiyam
as a document of scientific record, transcending its role as a mere grammar treatise.At its core,
Tholkaappiyam systematically documents the phonology, morphology and poetics of the Tamil
language and also thiNaimarabu. It is essential to recognize that Tholkaappiyam's contents were
not arbitrarily constructed but were derived from empirical observation and meticulous analysis.
This empirical foundation renders it a comprehensive and authoritative source on Tamil grammar
and culture.

Tholkaappiyam exhibits all the key attributes associated with a significant research work or
empirical study in the realms of linguistics, language, and culture. Firstly, it offers a clear problem
statement, namely, the need to understand and codify the Tamil language. Secondly, it delineates
well-defined objectives, chiefly the organization and preservation of the Tamil language's rules
and structures. Thirdly, it rests upon appropriate theoretical foundations, drawing from the rich
linguistic tradition and culture of the Tamil people. Fourthly, it embodies a methodical approach
to data collection, encapsulating the principles, syntax, and usage of Tamil. Lastly, it presents a
rigorous data analysis, contributing to a systematic understanding of the language's intricacies and
its profound cultural implications.

In conclusion, Tholkaappiyam stands as a remarkable scientific record, not just of the Tamil
language, but also of the culture and heritage of the Tamil-speaking people. Its enduring relevance
and value extend far beyond the historical and linguistic realms, as it encapsulates the very essence
of a people, their unique expression, and their intellectual achievements. Tholkaappiyam's
comprehensive documentation of Tamil grammar and literature, underpinned by empirical
observation and analysis, solidifies its place as an invaluable cultural and linguistic relic. It is a
testament to the timeless importance of preserving and understanding the heritage of one's
language, one's culture, and the collective wisdom of generations past, making it an enduring
source of inspiration for the Tamil-speaking world and a testament to the universality of linguistic
and cultural exploration.

Keywords: scientific record, Tamil language, Tamil linguistic and Tamil culture
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Building transformer-based models for natural language

processing applications
Dr S. K. Lavanya (Anna University MIT Campus, Chennai)

Natural Language Processing, A.I, M.I

In my presentation, I will give an overview of how large language models (LLMs) based on
Transformers can be used to edit, examine, and produce text-based data as well as how
programmers can use these LLLMs to build powerful NLP systems that allow for easy and natural
human-computer interactions in chatbots, Al speech agents, and other applications. We will look
at how BERT, a transformer-based LLLM, has revolutionized NLP by producing results for question
answering, entity recognition, intent recognition, sentiment analysis, and other tasks . We will go
over how to use these models for different NLP tasks, like text classification, named entity
recognition (NER), and answering questions.

Generative Al in the context of Tamil Language

Dr. Subalalitha C N, Associate Professor, SRM University

Natural Language Processing, Machine Learning, Discourse Analysis and Computational
Linguistics

Information Extraction from Tamil Medicinal Documents

Prof D. Thenmozhi,

Department of Computer Science at SSN College of Engineering, Chennai, India
Member of the Machine Learning Research Group of SSN

Dr. Uthayasanker Thayasivam
PhD (U. Georgia), BSc Eng. (Hons) (Moratuwa)

Hands-on experience and knowledge in Data Science and Big Data projects related to text mining,
and automatic extraction of ontologies. Experience in mentoring students & leading research
scientists towards applying data science in decision making. Exposure, experience, and contacts
during long industrial (with Ask search engine) and academic (PhD) career.
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Tamil Text Generation using ChatGPT-3 Models

Dr. R. Ponnusamy
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Abstract: Tamil Text Generation using GPT-3 Models is a fascinating application of advanced
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natural language processing technology. GPT-3, a generative pre-trained transformer, has been
trained on extensive Tamil language data, enabling it to generate coherent and contextually
relevant Tamil text. The process begins with a user providing a prompt or input text in Tamil.
GPT-3 leverages its understanding of the language's grammar, vocabulary, and contextual cues to
generate text that logically extends from the input. It's capable of generating anything from short
sentences to lengthy paragraphs, adapting its output to the provided context. What sets GPT-3
apart is its ability to produce human-like and creative text. It can answer questions, create engaging
stories, compose articles, and even write code in Tamil, making it a versatile tool for content
generation across various domains.

Moreover, GPT-3 can be fine-tuned for specific tasks or industries, enhancing its performance in
specialized applications. This adaptability has led to its use in chatbots, content creation,
automated customer support, and more, where it can save time and effort in generating high-quality
text. However, it's crucial to exercise caution when using GPT-3 for text generation. Ethical
concerns, such as bias in generated content, the potential for spreading misinformation, and the
need for human oversight, must be addressed. Tamil Text Generation with GPT-3 models is a
powerful tool that harnesses the capabilities of pre-trained language models to generate coherent
and contextually relevant Tamil text for a wide range of applications, revolutionizing content
creation and language-related tasks in the Tamil language. In this paper, an attempt is made to
understand the basic design of the ChatGPT-3 model in a detailed manner.

Keywords: Tamil Text Generation, GPT-3 Models, chatbot, trained language models, natural
language processing.

1. Introduction

Natural Language Processing is a challenging task in the world. In a human brain, it is natural to
store various real-world objects in different forms, that is, in the form of text, audio and video.
Also, internally, a human can visualize the task and things that they are seeing in the real world.
Able to get attention while speaking with others and answer the questions as well. In the real world,
it is a significant challenge to create such systems. There are several attempts have been made to
develop such strategies in the computational world. One such Chatbot is ChatGPT (Chat
Generative Pre-trained Transformer), which is an interactive text-processing system which is
capable of generating human-like text responses, engaging in conversations, and providing
assistance with various topics and tasks based on the input it receives. It also performs functions
like Conversational Interaction, Answering Questions, Language Translation, Content Creation,
Tutoring and Learning, Programming Help, idea Generation, etc.

In the abstract, one can easily explain the task, but the creation of such a system and understanding
the design is a complex task. In this paper, it explains the procedure and nature of the working of
Chat GPT — 3 models in a detailed manner. Section 2 gives a literature survey about ChatGPT
usage and model—Section 3 Explains the working nature of the operating model of ChatGPT.
Section 4 explains the attention model of Transformers modelling, Section 5 gives the empirical
modelling of the self-attention system, and Section 6 concludes the paper.

2. Literature survey

The reference points to a book titled "Natural Language Processing with Transformers", authored
by Tunstall, Werra, and Wolf, published by O'Reilly Media in 2022 [1]. This book delves into the
field of natural language processing, specifically focusing on transformer models. It likely covers
the theory, techniques, and practical applications of using transformers in processing and
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understanding human language. Readers can expect comprehensive insights into the cutting-edge
methods of natural language processing, with a particular emphasis on transformer architectures,
making it a valuable resource for developers, researchers, and NLP enthusiasts.

Nazir and Wang, in 2023[2], present a comprehensive survey on ChatGPT, focusing on its
advancements, applications, prospects, and challenges. Published in Meta-Radiology, the study
explores the evolving landscape of ChatGPT technology. It discusses recent advances in the field,
detailing the diverse applications of ChatGPT in various sectors. The paper critically assesses the
prospects of ChatGPT, shedding light on its potential developments. Additionally, the research
addresses the challenges faced by ChatGPT, providing insights into the hurdles that need to be
overcome for further progress. The paper serves as a valuable resource for scholars, researchers,
and professionals interested in understanding the current state and future potential of ChatGPT
technology.

In their 2023 paper, Raj, Singh, Kumar, and Verma [3] investigate the potential advantages and
applications of ChatGPT for enhancing the efficiency and effectiveness of business operations.
Published in Bench Council Transactions on Benchmarks, Standards, and Evaluations, the
research delves into the role of ChatGPT as a tool in business contexts. The study explores various
use cases, demonstrating how ChatGPT can be leveraged to streamline and optimize a range of
business processes. This work is valuable for business professionals seeking to understand the
practical implications of ChatGPT technology in their operations.

In their 2023 preprint, Rahman and Watanabe [4] explore the implications of using ChatGPT in
education and research contexts. The study delves into the opportunities presented by ChatGPT,
highlighting its potential benefits in enhancing educational experiences and advancing research
methodologies. The authors also address the associated threats, discussing ethical concerns and
possible limitations of integrating ChatGPT in educational settings. The paper offers strategic
insights, proposing approaches and guidelines to maximize the advantages of ChatGPT while
mitigating risks effectively. This research is invaluable for educators, researchers, and
policymakers aiming to harness Al technologies for educational and research purposes.

In their paper presented at the 2023 2nd International Conference on Applied Artificial Intelligence
and Computing (ICAAIC), Bhardwaz and Kumar [5] conducted a comprehensive comparative
analysis of three prominent chatbot technologies: ChatGPT, Google BARD, and Microsoft Bing.
The study delves into the intricacies of these technologies, evaluating their functionalities,
performance, and capabilities. Through this analysis, the authors aim to provide valuable insights
into the strengths and weaknesses of each chatbot system. This research is essential for
professionals and researchers in the field of artificial intelligence, offering a detailed understanding
of the comparative landscape of these chatbot technologies.

In their 2023 study published in the Mesopotamian Journal of Computer Science, Sakirin and Ben
[6] they have investigated user preferences regarding ChatGPT-powered conversational interfaces
in comparison to traditional methods. The research focuses on understanding how users perceive
and interact with ChatGPT-powered systems compared to conventional methods of
communication. By exploring user preferences, the study sheds light on the acceptance and
usability of ChatGPT in real-world conversational scenarios. The paper likely discusses findings
related to user satisfaction, ease of use, and effectiveness of ChatGPT-powered interfaces when
contrasted with traditional methods. This research contributes valuable insights to the field of
human-computer interaction, providing a nuanced understanding of user preferences in the context
of advanced conversational interfaces.

The reference highlights the research conducted by A. Baki Kocaballi [7] at the School of
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Computer Science, University of Technology Sydney. The study focuses on Conversational Al-
powered design, specifically utilizing ChatGPT in various roles: as a designer, user, and product.
This research likely explores the innovative applications of ChatGPT in the realm of design
processes, demonstrating its versatility and potential impact on user experience and product
development. The work sheds light on the intersection of artificial intelligence and design, offering
valuable insights into the evolving landscape of Al-driven creative processes.

The referenced book, "GPT-3: Building Innovative NLP Products Using Large Language Models,"
authored by Sandra Kublik and Shubham Saboo in 2022[8], explores the practical applications of
GPT-3, a large language model developed by OpenAl. The book likely delves into the techniques
and methodologies for building innovative Natural Language Processing (NLP) products using
GPT-3. Readers can expect insights into leveraging this advanced language model for creative and
impactful NLP applications, providing a valuable resource for developers, researchers, and
professionals interested in harnessing the power of large language models for innovative projects.
The reference discusses a guide titled "Building Transformer Models with Attention," authored by
Jason Brownlee, Stefania Cristina, and Mehreen Saeed in 2022 [9] for Machine Learning Mastery.
The guide demonstrates how to create a Neural Machine Translator from scratch using the
Transformer architecture in Keras. It provides practical insights and implementation techniques
for developing sophisticated neural network models, explicitly focusing on attention mechanisms.
This resource is valuable for developers and machine learning enthusiasts seeking a hands-on
understanding of building advanced models, showcasing real-world applications of Transformer
architectures in the field of machine translation. In the above literature survey, an analysis is made
to study the different aspects of the ChatGPT System.

3. Operating Model of ChatGPT

OpenAl is a research organisation founded in 2015 with the goal of promoting and developing
friendly Al that benefits humanity. Later, in 2018, OpenAl introduced GPT (Generative Pretrained
Transformer), a transformer-based language model that was trained on a large corpus of text data.
ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a Large language model-
based chatbot developed by OpenAl and launched on November 30, 2022.

ChatGPT is built upon either GPT-3.5 or GPT-4—members of OpenAl's proprietary series of
generative pre-trained transformer (GPT) models. Initial approaches focused on rule-based
systems and hand-crafted linguistic models and later used deep learning methods have enabled the
development of more sophisticated and effective language models. Based on the transformer
architecture developed by Google—it is fine-tuned for conversational applications using a
combination of supervised and reinforcement learning techniques.

Foundation models are trained with a wide variety of data and can transfer knowledge from one
task to another. It contains hundreds of billions of hyperparameters that have been trained with
hundreds of gigabytes of data. BLOOM (Big-Science Large Open-science Open-access
Multilingual Language Model) is a critical foundation model created by volunteers from a
community-driven machine learning (ML) platform called Hugging Face. The BLOOM model,
which included 176 billion parameters and was trained for 11 weeks, is now available to the public
and can be accessed through the Hugging Face website. The Centre for Research on Foundation
Models (CRFM) is a new interdisciplinary initiative born out of the Stanford Institute for Human-
Cantered Artificial Intelligence (HAI) that aims to make fundamental advances in the study,
development, and deployment of foundation models. Foundation models (e.g., BERT, GPT-3,
CLIP, Codex) are models trained on broad data at scale such that they can be adapted to a wide
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range of downstream tasks.

The working model of the ChatGPT is given in the following figure 1. It is a three-step process.
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Figure 1 ChatGPT Working Model

Step 1 Pre-Training

1.

il.

iii.

Architecture: ChatGPT is based on a transformer architecture. Transformers are deep-
learning models designed to handle sequential data efficiently.

Pre-training Corpus: Initially, the model is pre-trained on a massive corpus of text data
from the internet. It learns to predict the next word in a sentence, given all the previous
terms. This process helps the model learn grammar, facts, reasoning abilities, and some
biases present in the training data.

Unsupervised Learning: During pre-training, the model learns to represent language
patterns in a way that allows it to generate coherent and contextually relevant responses to
given prompts.

Step 2 Fine-tuning

1.

il.

iii.

Custom Datasets: OpenAl fine-tunes the model using custom datasets created by OpenAl
These datasets include demonstrations of correct behaviour and comparisons to rank
different responses.

Human Feedback: Human reviewers assess and rate model outputs for a range of example
inputs. OpenAl uses this feedback to create a reward model, which is used to fine-tune the
model further.

Iterative Process: Fine-tuning is an iterative process where the model is repeatedly adjusted

and evaluated based on human feedback until it performs well according to OpenAl's
defined criteria.
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Step 3 Reinforcement Learning from Human Feedback
Fine-tuning ChatGPT with RLHF consisted of three distinct steps:

1.

il.

1il.

Supervised fine-tuning (SFT) — A pre-trained language model is fine-tuned on a relatively
small amount of demonstration data curated by labellers to learn a
supervised policy (the SFT model) that generates outputs from a selected list of prompts.
It represents the baseline model.

"Mimic human preferences" — Labellers are asked to vote on a relatively large number of
the SFT model outputs, this way creating a new dataset consisting of comparison data. A
new model is trained on this dataset. It is referred to as the reward model (RM).

Proximal Policy Optimization (PPO) — The reward model is used to fine-tune further and
improve the SFT model. The outcome of this step is the so-called policy model.

4. Transformer Model Self-Attention

The ChatGPT uses the transformer architecture to generate the text. It is a neural network
architecture. The main crux of the transformer architecture is the multi-head attention model,
which compares to the self-attention model. The architecture is shown in the following figure 2.
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Figure 2 Transformers architecture — Multi-Head Attention and Self—Attention Model

5. Empirical Modelling of Self-Attention Modelling

In a human brain, when you read a sentence, a process happens for each word in the sentence as
your eyes progress through the sentence. For example, the sentence "gmgor <L 90%sT eupsmi".
When your eyes see gmggm, your brain looks for the most related word in the rest of the sentence to
understand what gmgor is about (query). Your brain focuses or attends to the word augsms (key).
This process is implemented through scaled dot-product attention; the input sequence was
transformed using three matrices representing the query, key, and value.

The first MatMul implements an inquiry system or question-answer system that imitates this brain
function, using Vector Similarity Calculation.
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Think of the MatMul as an inquiry system that processes the inquiry: "For the word q that your
eyes see in the given sentence, what is the most related word k in the sentence to understand what

q is about?" The inquiry system provides the answer as the probability.
Table 1 Query — Key Probability Matrix

q k probability
oIggm QIpS T 0.94
UBSTT W LILIREST 0.86
LIS ST QUBS T 0.76
. QK"
Attention(Q, K, V') = softmax( W

Vdy
The next word to be generated is computed in a self-attention system is computed through the

above model. It is shown in the following figure 3.
(v)

Attention Value (Bag of words contributing proportionally) n

v j" W
Transfer to

- \I @ (ng) |: n ﬂ ﬂ m tensor space V
" 3 3 - 3

(n,d) (d, v)
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database (v, d)

(n,d)
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Figure 3 Attention Value Computation

6. Conclusion

In this paper it gives the complete working nature of the ChatGPT model and the process of
bootstrapping the ChatGPT model for different languages, especially in Tamil. Understanding the
Complete ChatGPT design requires learning about various components and learning methods. The
model uses supervised, unsupervised and reinforcement learning methods. It also explains the
transformer. One of the essential components of Transformer learning is attention gaining or
attention computation. The learning-based self-attention model is presented, and its working nature
is presented with an example.
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Porul Thaedal - A Tensor-Based Semantic Representation Model

for Enhancing Tamil Language Understanding.
Muthu Vignesh, Yugeshwaran, Deeptharun & Kannan C
KIT- Kalaingnar karunanidhi Institute of Technology

ABSTRACT

Language serves as a fundamental communication tool, and each linguistic entity possesses
distinct grammar rules and literary traditions. Tamil, an ancient language, boasts a rich history
spanning over 2000 years, characterized by unique grammatical rules and a vast literary heritage.
Tamil also exhibits a remarkable richness in morphology, allowing for the creation of numerous
words through the addition of morphological suffixes to a single base word. For instance,
combining "LOJLD" (tree) with "LOM" (like) yields "LOFLOM" (tree-like), and "LOIFLD" combined
with "&erfledBIBE&I" (from) results in "LOJMEIGHETIeNHHS" (from the trees), among many
other possibilities. However, existing language models often fail to recognize the intricate
morphological variations of individual words.

Furthermore, the Tamil language exhibits an exceptionally high lexical diversity, with multiple
words conveying the same meaning. For instance, the concept of "love" can be expressed through

words such as "&|60TL|" (anbu), "&M&H6V" (kaadhal), "GBH&FLD" (nesam), "CGB" (ne), "GHUILD"

(neyam), "LIM&EFLD" (paasam), and many more. Unfortunately, conventional search engines and
language models often lack the capability to recognize synonymous expressions, necessitating the
need to accurately map and correlate such words.

This research introduces a novel approach to address these linguistic challenges through the
development of a Tensor Model for Tamil Language Semantic Representation. Leveraging the
intricate morphology and complex syntactic structures inherent to Tamil, this model represents
Tamil words as multidimensional vectors, with each dimension corresponding to a unique
semantic feature. By projecting Tamil words into a high-dimensional space, the model effectively
captures the intricate relationships between words and their contextual meanings.

To ensure the model's robustness, it was meticulously trained on an extensive corpus of Tamil text.
Subsequently, a comprehensive evaluation utilizing established semantic representation metrics
demonstrates that the Tensor Model for Tamil Language Semantic Representation outperforms
existing models. Notably, it offers a more precise and nuanced representation of Tamil language
semantics.

This pioneering model holds significant promise for applications across the spectrum of natural
language processing, machine translation, and various other fields where a comprehensive
understanding of Tamil language semantics is imperative. Specifically, it can facilitate the
exploration of literary works by enabling the identification of synonymous expressions across
poems, songs, and other forms of Tamil literature, thereby enriching the analysis and interpretation
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of this ancient and vibrant language.
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Abstract

Machine translation is used in a variety of contexts, including business, industry, domain
specific, and multi-domain. To translate from one language to another, machine translation
of bilingual dictionaries is necessary. Lexicon, collection of words and the knowledge
associated with their usage in a language, are found in dictionaries. To translate Tamizhi into south
Indian languages, this research suggests a hybrid strategy for creating lexicons for Tamizhi
inscriptions. One of the earliest inscriptions is Tamizhi, which dates to the third century BCE. One
of the challenges in digitizing Tamizhi inscriptions is due to its language complexities.
Tamizhi inscriptions lack spaces and dots, making it challenging to distinguish between words in
the writing. A Tamizhi text is read based on the phonemes. Based on this concept, the
pronunciation of Tamizhi characters is generated using a grapheme-to-phoneme (G2P) conversion
approach. This is accomplished using a sequence-to-sequence (seq2seq) architecture for G2P. In
this, CNN is utilized as a text-to-phoneme encoder, while Bi-LSTM is employed as a phoneme-
to-text decoder. Before the morphemes are decoded to text, phonological errors are fixed after
encoding in order to interpret them. A reliable machine-readable Tamizhi dictionary is created by
manually validating and correcting the generated lexicons by subject-matter specialists. Any south
Indian language can be translated from Tamizhi using this dictionary. So that the general
population can understand the information found in Tamizhi inscriptions in their own languages,
such as medical scripts, architectural notes, trade, and commercial secrets, etc.

Keywords: Machine Translation, Tamizhi Inscriptions, Lexicon, G2P Conversion, Morphemes
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Question answer retrieval for thirukkural
Roshan B, Mohamed Saffi M
Thiagarajar College of Engineering

Abstract:

The Thirukkural, a classical Tamil text authored by Thiruvalluvar, comprises 1,330 couplets that
offer profound insights into various aspects of life, ethics, and governance. This project presents
an innovative approach to enhance the accessibility and understanding of the Thirukkural using
large language model(LLM) techniques.

Our project leverages state-of-the-art large language models, specifically the BERT-based
language model, to provide users for exploring the Thirukkural. Users can input their questions in
Tamil, and the system will employ a large language model to analyse the input, retrieving the most
relevant couplets from a curated dataset.

By bridging the gap between ancient Tamil literature and modern technology, this project aims to
promote the timeless wisdom of the Thirukkural to a wider audience and facilitate a deeper
comprehension of its teachings.

In the context of our 1 model, it was observed that BERT consistently outperformed other adapter-
based approaches in terms of accuracy. Additionally, our project emphasizes that when compared
to fine-tuning models, Adapter models demonstrate an advantage by necessitating the training of
fewer parameters.
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ABSTRACT

Now a days the Al (Artificial Intelligence) Technologies is used in many fields. But in majority of
medical field, many disabled and physically challenged people are expecting the help from Al
field. This work probes into three essential technologies such as Text-to-Speech (TTS), Voice
Recognition (VR), and Speech Corpora. It underscores their crucial contribution to the creation of
assistive devices for people with physical limitations.

Al has been opening up new and simpler ways to manage our daily activities, with big
potential to automate tasks that typically requires human intelligence such as a speech and voice
recognition. Al can help individuals with disabilities by making a major difference in their ability
to get around and take part in the activities of daily living Al-voice assisted technologies like echo,
Google home, Alexa have created new means of accessibility for disabled people. As artificial
intelligence took an important role in communication and interaction, the use of this technology
enables individuals with disabilities to access information much easier all just by speaking to their
devices.

Al can be used to develop assistive technologies that can help people with disabilities to
perform tasks that would otherwise be difficult or impossible for them in this Al the people those
who are not able to see can use voice recognition technology for their comfort, “By This,disabled
people get benefited”,namely Al powered devices like speech recognition software and smart
home devices can help people with mobility or speech impairments to communicate and control
their environments.

Keywords:ALVR,TTS
INTRODUCTION

A translator is a person or tool that converts information, from one language into another, ensuring
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that the content, context, and style of the original message are preserved. This process requires a
deep understanding of both the source and target languages, as well as the cultures they represent,
in order to convey the meaning accurately and sensitively. While human translators specialize in
understanding nuances, idioms, and cultural contexts, machine translators utilize algorithms and
large datasets to generate translation.

In the age of rapid technological advancements, the intersection of voice-based
technologies and assistive solutions presents a paradigm shift for the physically challenged. This
paper delves deep int three pivotal technologies: Text-to-Speech (TTS), Voice Recognition (VR),
and Speech Corpora, and their transformative impact in crafting assistive technologies tailored for
those with physical impairments.

Text-to-Speech (TTS) solutions empower users by converting written text into natural-
sounding audio. This has opened doors for those who may struggle with reading due to visual
impairments or specific learning disabilities, allowing for equal access to information and digital
content. Voice Recognition, or speech-to-text, on the other hand, turns the spoken word into
written form, paving the way for hands-free computing and aiding those who might find typing or
using a touchscreen challenging. Meanwhile, the unsung hero behind these functionalities, Speech
Corpora, provides the vast datasets that enable the precision and adaptability of these voice
technologies, ensuring they evolve and adapt to users’ needs.

For individuals with physical challenges, these technologies are not merely convenience
tools. They represent newfound independence, equality, and the breaking down of barriers in a
predominantly digital world. This paper aims to explore the nuances of these innovations, detailing
their technical intricacies, current applications, and potential future trajectories in the realm of

assistive technologies.
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RELATED WORKS

Speech Recognition for Vulnerable Individuals in Tamil using pre-trained XLSR model is
mentioned in [1]. In this model automatic speech recognition is a tool used to transform human
speech into a written form. In this paper we describe an automatic speech recognition model,
determined by using three pretrained models, fine-tuned from the Facebook XLLSR Wav2Vec2
model, which was trained using the Common Voice Dataset. The best model for speech

recognition in Tamil is determined by finding the word error rate of the data.

The work concentrates on the device, which helps as a translation system for translating sign
gestures into text mentioned in [2]. "Tamil sign language translator to solve this problem." Here,

gestures are translated to Tamil language to find a localized solution.

The focus of the research is to analyse real-time sign language translators that are used for language
translation. Sign Language Translation Systems that were developed from 2017 to 2021 are
analysed in this paper mentioned in[5]. Index Terms—Sign Language, Sign Language

Recognition, Handicapped aids, Application Program Interfaces, IoT.
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ARA will read out the content of the website and then using speech to text and text to speech
modules along with selenium, the software can automate any website mentioned in [4]. The
designed voice assistance connects with the intended applications to provide results that the user
has demanded. The objective of this paper is to illustrate how voice assistants are used in everyday
life and to explore whether there is potential for making them accessible for people with

disabilities.

Creating a system that consists of a module that initially transforms voice input to English text and
which parses the sentence, then to which Indian sign language grammar rules are applied is
mentioned in [3]. This is done by eliminating stop words from the reordered sentence. Indian Sign
Language (ISL) does not sustain the inflections of the word. Hence, stemming is applied to vary
over the words to their root/ stem class. All words of the sentence are then checked against the

labels in the dictionary containing videos representing each of the word

3. METHODOLOGY

The application is properly installed and all required Python modules are set up.The user has a
working microphone and speakers/headphones.
Basic Flow
1. Start Translator Application: The user launches the translator application. The
GUIdesigned using ‘tkinter’and styled with HTML & CSS, displays two main sections:
'Input' and 'Output’, and dropdowns for selecting languages.
2. Select Input Language: The user selects their native or spoken language from the first
dropdown.
3. Select Output Language: The user selects the language they want their speech or text
translated to from the second dropdown.
4. Voice Input: The user clicks the 'Speak’ button. This action triggers the application to wait
for voice input.
5. Speech Recognition: Once the user speaks, the application captures the voice using the

‘speech recognition’ module and converts the voice input into text.
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6. Translation: The application then takes the recognized text and translates it into the
desired output language. The translation process can be performed using various translation
APIs or modules available.

7. Display Translation: The translated text is displayed in the 'Output' section of the GUL

8. Text-to-Speech Conversion: The user has an option to listen to the translated text. Upon
clicking the 'Listen’ button, the application uses the ‘gTTS’module to convert the translated
text into speech.

9. Play the Translated Speech: The application plays back the translated speech using the

system's default media player, facilitated by the ‘os’module.

TECHNOLOGICAL STACKS

ﬁ GUI TRANSLATION
1.tkinter:GUI Translator: Language
creation \\ translation.
PY 2.HTML & CSS: \
interface
styling
W v
o [ ] o [ ] ®
PN VN S
CORE HTML VOICE PROCESSING SYSTEM INTERFACE:
A OS: Operating

system
interactions

Python:Primary 1.speech_recognition:
development language¢ CSE Speech to text.
@ 2.gTTS: Text to speech

Implementation

Input can be provided in the form of text or voice, and the output is generated in either text

or voice format, making it accessible to a wide range of users.

Python Libraries
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. tkinter: This built-in Python library is used for creating the graphical user interface of your

application.

e Install via: Typically comes pre-installed with Python.

. translator: This module provides translation capabilities. Depending on the specific

library you're referring to (since there are multiple), you would need appropriate

credentials, e.g., API keys.

e Install via: pip install translator (or another specific package if you're referring to

a different one)
. gTTS (Google Text-to-Speech): Converts the translated text into speech.
o Install via: pip install gTTS

. 0s: This built-in module allows interfacing with the underlying operating system. For this

project, it might be used to play back the audio files created by gTTS.
e Comes pre-installed with Python.
. speech recognition: Recognizes speech and converts it to text.

e Install via: pip install Speech Recognition

CONCLUSION

In an increasingly interconnected world, this work stands as a beacon of innovation,

emphasizing inclusivity and convenience for disable peoples. By harnessing the capabilities of Al

technologies, this initiative not only benefited for disables but also bridges language barriers. For

this work, future enhancements by developing a companion mobile application where it enhances

the system to function effective even without a stable internet connection.
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Legal Assistant Through AI Chatbot In Tamil For Cyber

Crimes Against Women
Dr. S.K Lavanya Assistant Professor & Shriya S, Jayasimman J

Information Technology Information Technology Information Technology Madras Institute of
Technology Madras Institute of Technology Madras Institute of Technology Chennai, India
Chennai, India Chennai, India

Tharun CD
Information Technology , Madras Institute of Technology, Chennai, India

In India, awareness of cybercrime has become a necessity, particularly for women who are
increasingly targeted by digital offenders. This project explores the development of a Legal
Chatbot in the Tamil language, dedicated to empowering women with knowledge about
cybercrime laws and legal recourse. The project emphasizes the significance of understanding
cybercrime in India, where the number of cases against women has risen alarmingly, as
evidenced by an 18.4% surge in cybercrime incidents, with a staggering 28% increase in cases
targeting women, according to the National Crime Record Bureau's 2021 report. Existing
chatbots, while well-intentioned, often fall short of delivering timely responses, they tend to
function merely as intermediaries between victims and legal experts. To address this limitation,
our chatbot will deliver precise and pertinent responses, equipping users with the relevant laws,
complaint registration procedures, insights from similar cases, and practical guidance. To
enhance user interactions, the chatbot will employ advanced NLP models with Named
Entity Recognition and Intent identification, a legal knowledge graph, and leverage the
power of GPT-3 to generate contextually relevant responses. Furthermore, voice
input functionality will be integrated to ensure accessibility to a broader user base.
This innovative Legal Chatbot represents a pivotal step in educating and empowering women
in the face of rising cybercrimes. By providing immediate, tailored information and support,
we aim to make a meaningful contribution to women's safety and legal awareness in the digital
age.
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ABSTRACT:

The rapid growth of videos on websites like YouTube in a period of information abundance has
created an essential need for effective content summary. This research proposes a novel method
for summarizing YouTube transcripts that makes use of state-of-the Transformers models. To
make use of artificial intelligence (AI) to generate concise and coherent summaries of wide video
transcripts, improving user accessibility and making content easier to read and understand. The
background of this work is to shorten the length of the video transcript text. It can be challenging
to provide time to watch such videos, which may last longer than expected and viewer’s efforts
may be useless if they cannot extract useful information from them. Summarizing transcripts of
such videos allows us to spot essential patterns in the video and save time quickly. The method
of this work consists of four main phases. The first phase is loading the YouTube video. Then
apply Preprocessing techniques, which eliminate Punctuation, stop words, and case formatting.
Next is to implementation of Abstractive Summarization using Pretrained Transformer models.
Bidirectional Auto Regressive Transformers (BART) and Pre-training with Extracted Gap-
sentences(PEGASUS) are these two models used for summarization in this particular instance.
Next phase is to convert the summarized text into regional language(Tamil).The final of this
work is Performance Evaluation using ROUGE Score(Accuracy, precision, recall, and F-
measure) to find the best model. The finding is that the pre-trained language models built on the
transformer architecture were best suited for summarization tasks. To conduct comparative
studies, this is calculated by ROUGE scores for each model's predictions.

Keywords:Abstractive Summarization, Pretrained Transformer-BART Model,
Pretrained Transformer - PEGASUS Model, Performance Evaluation.
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Abstract

Code-mixing, the amalgamation of multiple languages in conversation or text, poses unique
challenges for natural language processing (NLP). Bilingual speakers seamlessly switch between
languages, especially in the context of Tamil-English code-mixing. It is imperative to address
several critical challenges to effectively develop computational tools for processing such code-
mixed data. These challenges encompass addressing the scarcity of high-quality code-mixed
corpora and dealing with privacy concerns during data collection. Furthermore, achieving domain
and language generalization in NLP tools and addressing bias and harmful behavior becomes
essential. While multilingual models like mBERT and MuRIL offer potential solutions, evaluating
their sensitivity to noise and transliterations remains crucial. Standardizing pipelines for code-
mixed tasks to enhance performance is of utmost importance. Ongoing research is actively
working on prototyping efficient data collection pipelines and conducting in-depth analyses,
particularly in the English-Tamil language pair. In conclusion, we require innovative solutions to
overcome these challenges and improve NLP tools for code-mixed data, thus benefiting
applications such as sentiment analysis, privacy, security, and stance detection.

Keywords- Code-mixed text, Multilingual data, Low resource language, Natural Language
Processing, Natural Language Understanding.

1. Introduction

Code-mixing, the dynamic interplay of languages within a single communicative context, has
captured the attention of linguists and computational linguists alike. The seamless alternation
between languages is a common linguistic practice in multilingual societies worldwide. While
code-mixing is an affluent area of linguistic study, this article focuses on its computational
aspects, particularly within the Tamil and English context. In Tamil and English code-mixing,
the phenomenon takes on unique characteristics due to the coexistence of these languages in
various regions, notably in India, Malaysia, Singapore, and Sri Lanka. Tamil, a Dravidian
language, and English, a Germanic language, have distinct linguistic features and structures
(Kathiravan et al., 2016). The seamless alternation between Tamil and English, influenced by
sociolinguistic factors and language policies, poses intriguing challenges and opportunities for
natural language processing (NLP) researchers. Code mixing combines linguistic elements,
including morphemes, words, modifiers, phrases, clauses, and sentences, combined from two
distinct grammatical systems within a single sentence (Report, 2021). Figure 1 depicts the
example of Tamil and English code-mixed social media comments.
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Figure 1: Tamil and English code-mixed text

This research article aims to provide a comprehensive overview of the challenges and
prospects in processing code-mixed data involving Tamil and English. Our objectives include:
1. Investigating the scarcity of high-quality code-mixed corpora and privacy concerns in data
collection. 2. Exploring the challenges of generalization across domains and languages,
particularly in social media text. 3. Analyzing the role of transfer learning and multilingual
models in addressing the low-resource nature of code mixed data.

4. Discuss strategies to address bias and harmful behavior in code-mixed data

processing. 5. Highlighting the need for standard pipelines and integrated approaches in
code-mixed NLP research.

The objectives, as mentioned above, generate the following research questions.

RQ1- What strategies can effectively address the scarcity of high-quality code-mixed corpora
and privacy concerns in data collection?

Ans: To address these challenges, researchers can explore alternative data sources like comments
on newspaper articles and video-sharing platforms, identify high-yield code-mixed terms within
existing corpora, and develop efficient data collection pipelines that respect privacy regulations.

RQ2- How can generalization challenges across domains and languages, especially in social
media text, be mitigated?

Ans: Overcoming these challenges involves deeply understanding hashtags' role in encoding
affective and semantic content in tweets, leveraging hashtag segmentation tools, and minimizing
reliance on quick data annotation methods. Developing models that are not domain-specific or
dataset-specific is also crucial.

RQ3- What are the contributions and limitations of transfer learning and multilingual models in
addressing the low-resource nature of code-mixed data?

Ans: Transfer learning and multilingual models, like mBERT and MuRIL, offer promise in
enriching code-mixed data representations. However, their sensitivity to noise, spelling
variations, and transliterations must be critically evaluated to harness their full potential. They
are preciousfor low-resource language pairs, such as English-Telugu and English-Kannada,
offering solutions for code-mixed text processing.

This research article is structured as follows: Section 2 provides an in-depth discussion of the
challenges related to Data Collection and Privacy Concerns. Section 3 explores the topic of
Generalization Across Domains and Languages. Section 4 delves into Transfer Learning and
Multilingual Models. Section 5 addresses the critical issue of Addressing Bias and Harmful
Behavior. Section 6 highlights the Lack of Standard Pipelines in code-mixed NLP. Section 7
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presents an overview of Current Work in Progress in the field. Finally, Section 8 offers a
Conclusion that discusses the potential impact of code-mixed NLP research. With these objectives
and structure in mind, we explore the challenges and solutions associated with processing code-
mixed data involving Tamil and English.

Table 1: List of Code-mixed language datasets, sources, and applications

Name Languages Source Applications
Offenseval English-Tamil, YouTube Offensive language
Dravidian English- detection
(Chakravarthi et al., Malayalam,

2021) English - Kannada

FIRE 2020 Tamil, Malayalam YouTube Sentiment Analysis
Dravidian

Code Mixed

(Chakravarthi et al.,
2021)

FIRE 2013-16 English, Hindi, Tweets, Facebook, Transliterated
Tasks Tamil, Telugu, Search, Question
(Banerjee et al., Answering
2020)

Stance Detection English — Kannada Facebook Stance detection
(Srinidhi Skanda

etal., 2017)

2. Data Collection and Privacy Concerns

One of the fundamental challenges in code-mixed NLP research is acquiring high-quality data.
Traditional sources of text data, such as news articles and Wikipedia, often lack code-mixed
content, necessitating innovative approaches to data collection. Speech corpora, text messages,
and online social networks have emerged as valuable repositories of code-mixed text.
Nevertheless, each of these sources presents its own set of challenges.

Social network companies are under increasing pressure to protect user data, making accessing
and collecting data from these sources progressively tricky. The Privacy concerns encompass
user consent, data anonymization, and ethical considerations (Banerjee et al., 2020). As
researchers, we are responsible for balancing the pursuit of

valuable code-mixed data with the need to protect user privacy. Striking this balance requires
careful consideration and ethical data collection practices. Table 1 illustrates the Code-mixed
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datasets and their applications with the data sources.

Researchers are exploring innovative data collection approaches to overcome the scarcity of
code-mixed corpora and navigate the privacy challenges. These approaches include:

1. Identifying high-yield code-mixed terms within existing corpora to augment code-mixed data.

2. Exploring unconventional sources such as comments on newspaper articles and video-sharing
platforms, where code-mixing is prevalent.

3. Leveraging open-source initiatives and community contributions to build code-mixed datasets
collaboratively.

These approaches address data scarcity and promote community and collaboration among
researchers in the code mixed NLP field (Chakravarthi et al., 2022; Kumaresan et al., 2021).
Researchers must remain vigilant about privacy concerns and adopt responsible data collection
practices to collect code-mixed data involving Tamil and English. Balancing the need for data
with ethical considerations is essential for advancing code-mixed NLP.

3. Generalization Across Domains and Languages

Developing NLP tools to process code-mixed data effectively requires models that generalize
across different domains and languages. However, the dynamic and diverse nature of textual data
on social media platforms presents unique challenges to achieving this level of generalization.
Social media platforms are dynamic environments where users discuss various topics. Code-
mixed text on these platforms spans various domains, from politics and entertainment to sports
and personal narratives. Models trained on a specific domain may struggle to generalize to new
and diverse domains, impacting their usability across different types of code-mixed data. To
address this challenge, researchers must develop robust and adaptable models to domain shifts.
This requires the incorporation of diverse training data and strategies for domain adaptation.

Code-mixed text exhibits multifaceted linguistic characteristics. It can include elements of both
languages, such as vocabulary, grammar, and syntax, seamlessly interwoven. Moreover,
colloquial language, slang, and cultural references further complicate the analysis of code-mixed
data. Understanding and accommodating these linguistic nuances is crucial for accurate
processing. Tools that effectively separate the linguistic features of code-mixed text and recognize
the switching points between languages are pivotal for accurate NLP in this context.

On social media platforms, hashtags serve as a means of categorization and expression. They play

a vital role in encoding affective and semantic content in code-mixed tweets and posts.
Understanding the significance of hashtags and leveraging hashtag segmentation tools can
significantly impact the development of tools for code mixed data and social media text analysis.
By recognizing the emotional and semantic cues conveyed through hashtags, NLP models can
enhance their understanding of code-mixed text and improve the accuracy of sentiment analysis
and content classification.
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Achieving robust generalization across diverse domains and effectively deciphering the
multifaceted nature of code-mixed text are pivotal challenges in developing NLP tools for code
mixed data involving Tamil and English. Moreover, recognizing the importance of hashtags as
linguistic markers can unlock new avenues for enhancing NLP accuracy in this context.

4. Transfer Learning and Multilingual Models

The scarcity of code-mixed data, particularly for low-resource language pairs like Tamil and
English, necessitates innovative approaches to enriching representations. Multilingual models
have emerged as a promising solution for code-mixed data processing, but their sensitivity to
noisy text, spelling variations, and transliterations must be critically evaluated(Antoun et al.,
2020; Feng et al., 2022; Kalaivani et al., 2021). Code-mixed data, especially for less commonly
studied language pairs like Tamil and English, is often characterized by insufficient training data.
This low-resource nature poses a significant challenge for traditional NLP approaches that rely on
large, well annotated corpora. Multilingual models, such as mBERT (Multilingual BERT), have
demonstrated great promise in cross-lingual model transfer (G. K. Kumar et al., 2022). These
models can be fine-tuned and evaluated for various languages, including code-mixed language
pairs. However, their effectiveness centers on carefully handling linguistic variation, including
noisy text, spelling variations, and transliterations. Researchers must critically assess the
suitability of multilingual models for code-mixed data, identifying potential pitfalls and
limitations in their application. Recent developments have introduced models like MuRIL
(Multilingual

Representations for Indian Languages). These models are trained on monolingual corpora of
Indian languages and their transliterated counterparts. MuRIL offers a promising solution for
code-mixed text processing involving Indian languages, including Tamil and English (S. Kumar
et al., 2022). Transfer learning and multilingual models offer a lifeline for code-mixed data
processing in low-resource scenarios. However, researchers must navigate linguistic variation
challenges and critically evaluate these models' suitability for specific code-mixed language pairs,
such as Tamil and English.

5. Addressing Bias and Harmful Behavior

The deployment of large language models for code-mixed text processing, often sourced from
online social networks, introduces concerns regarding harmful behavior and bias. Mitigating these
effects is crucial for responsible NLP research. While powerful, large language models are not
immune to exhibiting toxic and biased behavior, especially when trained on web data that includes
user-generated content. Code-mixed research often relies on data from online social networks,
which may contain hate speech, offensive language, or biased content. Mitigating the harmful
effects of deploying such models is paramount, necessitating rigorous evaluation and safeguards
(Chakravarthi et al., 2022; Ghanghor et al., 2021; Kumaresan et al., 2021; Ravikiran et al., 2022).
Code-mixed data processing adds a layer of complexity to the assessment of model behavior.
Researchers must characterize the harmfulness of models in the code-mixed setting, taking into
account linguistic nuances, cultural sensitivities, and sociolinguistic factors specific to the
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language pair. This characterization involves the development of evaluation metrics and
guidelines tailored to code-mixed contexts (Mahmud et al., 2023; Sanh et al., 2019).

Ethical considerations and responsible research practices are foundational in code-mixed NLP.
Researchers must adhere to ethical data collection, model training, and evaluation guidelines.
Additionally, they should actively engage with communities affected by code-mixed language
practices to ensure culturally sensitive and unbiased research. Transparency, fairness, and ethical
conduct should be at the forefront of code-mixed NLP research (Nascimento et al., 2022).
Addressing bias and harmful behavior in code-mixed NLP is a technical challenge and

an ethical imperative. Researchers must navigate these concerns carefully and diligently to
ensure the responsible development and deployment of NLP tools.

6. Lack of Standard Pipelines

Efficient and effective NLP tools for code-mixed data require standardized pipelines integrating
essential steps, such as language identification (LID) and normalization. The absence of such
pipelines can hinder performance on complex NLP tasks. Code-mixed NLP research often
involves a fragmented landscape, where various tasks and associated datasets are treated in
isolation. This fragmentation can lead to suboptimal performance on more complex NLP tasks,
as essential components like language identification and normalization are often overlooked or
inconsistently applied. Streamlining and unifying these processes within a standard pipeline can
improve overall NLP performance for code-mixed data.

6.1 The Role of Language Identification (LID)

Language identification, the process of determining the language(s) present in a text, is a
fundamental step in code-mixed data processing. Accurate LID is crucial for applying language-
specific NLP tools and models effectively. Integrating LID into the code-mixed NLP pipeline
ensures that subsequent processing steps are tailored to the identified languages (Hidayatullah et
al., 2022). Developing robust and language-agnostic LID models is a key component of
standardized code-mixed NLP pipelines.

6.2 Normalization and Preprocessing

Code-mixed text often requires normalization and preprocessing to address linguistic variations,
spelling inconsistencies, and other linguistic complexities. Normalization ensures that text is in a
standardized format for downstream NLP tasks. Establishing standardized normalization
techniques within code-mixed NLP pipelines can enhance the reliability of these tools (Thara &
Poornachandran, 2018). Normalization methods may vary depending on the language pair and
the nature of the code-mixed text, requiring flexibility within the pipeline.

The pipelines in code-mixed NLP research is a hurdle that must be overcome. Creating unified
pipelines encompassing essential steps such as language identification and normalization will
facilitate collaboration, improve performance, and drive progress in the code-mixed NLP
community.
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7. Current Work in Progress

Code-mixed NLP research is an evolving field, with ongoing efforts to address the challenges
discussed in this article. This section highlights some of the latest developments and research
endeavors.

7.1 Efficient Data Collection and Annotation

Ongoing research efforts focus on developing efficient pipelines for collecting code-mixed
corpora. These pipelines incorporate advanced techniques such as sentence-level classification
and query term mining for social media APIs. This approach streamlines the process of
acquiring code-mixed data for research and development. Efforts are underway to leverage
machine learning and natural language processing techniques to automate aspects of data
collection and annotation, reducing the manual effort required.

7.2 Quantitative and Qualitative Analysis of Code-Mixed Utterances

Researchers conduct in-depth quantitative and qualitative analyses of code-mixed utterances,
particularly in language pairs like English and Tamil. These analyses encompass various
linguistic dimensions, including parts of-speech tagging, syntactic analysis, and semantic
interpretation. Researchers aim to develop more accurate and context-aware NLP tools by
gaining a deeper understanding of code-mixed text. Advancements in linguistic analysis tools
and methodologies drive progress in understanding code-mixed language practices.

7.3 Community Engagement and Collaboration

Collaboration and community engagement are at the heart of code-mixed NLP research.
Researchers are actively collaborating with linguists, language communities, and experts in
sociolinguistics to ensure culturally sensitive and context-aware research. This collaborative
approach is instrumental in addressing code-mixed data's linguistic and sociocultural
complexities. Community-driven initiatives, data sharing, and open-source development are
contributing to the growth of the code-mixed NLP research ecosystem. As code-mixed NLP
research continues to evolve, these ongoing efforts reflect the commitment of researchers to tackle
the challenges posed by code-mixing involving Tamil and English. These endeavors aim to
enhance the usability and reliability of NLP tools for understanding and analyzing code-mixed
text, ultimately benefiting various applications, including sentiment analysis, privacy and
security, and stance detection.

8. Discussion and Conclusion

Code-mixing, the dynamic interplay of languages within a single communicative context, presents
unique challenges and opportunities for natural language processing (NLP) researchers. In the
context of Tamil and English, bilingual speakers seamlessly switch between these languages,
creating a rich linguistic landscape. To harness the potential of code-mixed data involving Tamil
and English, researchers must navigate challenges in data collection, model development, and
ethical considerations. Addressing the scarcity of high-quality code mixed corpora requires
innovative solutions. Researchers are exploring unconventional data sources, identifying high-
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yield code-mixed terms within existing corpora, and fostering community-driven initiatives.
These efforts aim to balance data needs with ethical considerations surrounding user privacy.

Generalizing NLP tools across diverse domains and languages, particularly in social media text,
remains a formidable challenge. Researchers must develop models that adapt to domain shifts
and recognize the multifaceted nature of code-mixed text. Additionally, understanding the role of
hashtags as linguistic markers holds promise for enhancing NLP accuracy. Transfer learning and
multilingual models offer a lifeline for code-mixed data processing in low-resource scenarios.
However, their sensitivity to linguistic variations and transliterations necessitates careful
evaluation. Tailored models, like MuRIL, demonstrate the value of language-specific approaches
to code-mixed text.

Addressing bias and harmful behavior in code-mixed NLP is an ethical imperative. Researchers
must characterize model harmfulness in code-mixed settings and adhere to ethical data collection
and research practices. Engaging with affected communities is crucial for culturally sensitive and
unbiased research. Standardized pipelines that encompass language identification, normalization,
and other essential steps are essential for efficient and effective code-mixed NLP. Streamlining
these processes promotes collaboration and improves performance in code-mixed NLP research.
The code-mixed NLP research community is actively
working to address these challenges. Efficient data collection, linguistic analysis, community
collaboration, and open-source development are driving progress in the field.

In conclusion, the journey of processing code-mixed data involving Tamil and English is marked
by challenges and prospects. As researchers, we are dedicated to overcoming these challenges
through innovation, ethical research practices, and collaborative efforts. By doing so, we aim to
enhance the usability and reliability of NLP tools for understanding and analyzing code-mixed
text. These advancements will ultimately benefit various applications, including sentiment
analysis, privacy and security, and stance detection, and contribute to a deeper understanding of
multilingual communication in the digital age.
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Abstract

This paper presents a novel approach to sarcasm identification in Dravidian languages, specifically
Tamil, focusing on code-mixed text commonly found in social media platforms. Sarcasm, a
complex linguistic expression, often challenges traditional language rules by conveying the
opposite of its literal interpretation. Recognizing sarcasm is crucial for accurate sentiment analysis
and understanding the underlying intent and context in multilingual environments. We propose a
sequential neural network model that processes code-mixed Tamil-English text collected from
social media. Our pre-processing techniques include language detection and transliteration to
ensure consistency. The model employs embedding layers, dense layers with ReLLU activation, and
dropout layers to capture intricate text patterns and prevent overfitting. The final layer, utilizing
sigmoid activation, facilitates binary classification for sarcasm detection. Evaluation on the FIRE
2023 test dataset demonstrates a commendable overall accuracy of 78%, with a precision of 84%
for non-sarcastic statements and a recall of 90%. The macro average Fl1-score is 0.72, and the
weighted average Fl-score is 0.78, emphasizing the model's balanced and robust performance.
These findings highlight the model's potential utility in sentiment analysis, customer feedback
analysis, and content moderation in Tamil language platforms, contributing to a deeper
understanding of sarcasm in Tamil.

Keywords: Sarcasm Identification, Code-Mixed text, Neural Network, Tamil, Natural Language
Processing

1 Introduction

Sarcasm, a sophisticated form of linguistic expression where the intended meaning of a statement
1s contrary to its literal interpretation, poses a formidable challenge in natural language
understanding. Detecting sarcasm in written text, including social media posts, comments, reviews,
and news articles, has emerged as a critical task in the realm of natural language processing. This
task hinges on the automatic recognition of sarcastic statements within a given corpus of text,
which, in turn, is pivotal for comprehending the genuine sentiment, intent, and context concealed
within a statement. Sarcasm, by its nature, often subverts conventional language rules, necessitating
advanced computational techniques to uncover its subtleties. The significance of sarcasm
identification spans across diverse domains and applications. In the realm of sentiment analysis,
for instance, accurately discerning sarcastic comments from their non-sarcastic counterparts is
indispensable for precisely categorizing sentiment.

One emerging challenge in the field of sarcasm identification is the growing demand for effective
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methods on social media texts, especially in the context of Dravidian languages like Tamil. A
distinctive characteristic of social media communication in these languages is code-mixing, a
prevalent phenomenon where multiple languages are combined within a single discourse. Code-
mixed texts are often written in non-native scripts, further complicating the task. Systems trained
on monolingual data tend to falter when faced with the intricacies of code-switching across
different linguistic levels in such texts. Recognizing the urgency of addressing this challenge, our
research focuses on sarcasm identification in Tamil, leveraging a sequential neural network model,
and employing a code-mixed dataset comprising comments and posts collected from social media
platforms. This dataset encompasses both Tamil and English, adding a layer of complexity and
nuance to the sarcasm detection task. Our approach involves extensive pre-processing, including
language detection and transliteration to ensure uniformity in the data. Subsequently, the data is
tokenized into sequences of word indices, ready for neural network processing.

In the subsequent sections, we delve into the intricacies of our methodology, detailing the
architecture of our sequential neural network, the pre-processing steps, and the evaluation metrics.
We present the results of our model on the Tamil-English Dravidian-CodeMix dataset, showcasing
its exemplary performance. Our findings underscore the potential utility of our model in
applications like sentiment analysis, customer feedback analysis, and content moderation in Tamil
language platforms, ultimately contributing to a more comprehensive understanding of sarcasm in
the Tamil language, a promising facet of natural language processing that holds immense
prominence and relevance in today's digital age.

2 Related Work

This section provides an overview of the existing approaches to identify sarcasm. The majority of
research in sarcasm identification has primarily focused on the English language, given its
prevalence in social media communication. Recent studies have made significant strides in
identifying sarcasm within English-scripted domains like Twitter, product reviews, website
comments, and others, as evidenced by numerous research efforts[12-14]. However, in the context
of low-resource languages such as Hindi, Telugu, Tamil, Chinese, Arabic, and others, there has
been relatively limited exploration. Subsequent subsections will delve into the specifics of sarcasm
detection in both English and low-resource languages[15-16].

Sarcasm Detection in the English Language

Early research in sarcasm detection often employed rule-based methods, relying on linguistic
patterns and lexico-syntactic cues. For instance, Riloff et al. (2013)[1] introduced a rule-based
approach that identified sarcasm by contrasting positive sentiment with negative situations.
Supervised machine learning techniques, including Support Vector Machines (SVMs) and Random
Forests, gained prominence for sarcasm detection. Researchers like Davidov et al. (2010)[2] and
Reyes et al. (2013)[3] utilized labeled datasets to train models that could identify sarcastic
utterances based on features such as n-grams and sentiment scores. (Das, D., & Clark, A. J.
,2018)[4] presented an approach based on supervised machine learning considering posts having
text and images as content and also user’s interaction on those Facebook posts to detect sarcasm.
They proposed that if multimedia contents (like images) also shared along with textual posts then
that can prove useful in detecting sarcasm. With the rise of deep learning, neural network-based
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models have been increasingly employed for sarcasm detection. Some studies have utilized
recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks to capture
sequential dependencies in text (Gongalves et al., 2018)[5]. Current approaches to automatic
sarcasm detection rely primarily on lexical and linguistic cues. Ashwin et al aims to address the
difficult task of sarcasm detection on Twitter by leveraging behavioral traits intrinsic to users
expressing sarcasm.

Avinash et al [7] introduced a multi-head attention-based bidirectional long-short memory (MHA-
BiLSTM) network to detect sarcastic comments in a given corpus. They extract the most significant
features and build a feature-rich SVM that outperforms models built using lexical, semantic and
pragmatic features. (Gupta, S., Singh, R., & Singla, V., 2020) [6] proposed sarcasm detection
system based on emoticons and text. Further for detecting both sarcasm and emoticons, two
polarities were identified that is positive and negative, thus achieving an accuracy of 100%.They
used artificial neural network (ANN) as a classifier to classify the polarities. Also to increase the
emoticon polarity detection emoji sentiment ranking lexicon detection

system was used.

Sarcasm detection in the English language has witnessed a progression from rule-based approaches
to sophisticated deep learning models. While much of the research has been focused on English,
there is an increasing interest in multilingual sarcasm detection, as sarcasm is not limited to a single
language. This opens avenues for research in languages other than English.

Sarcasm Detection on Low Resourced Languages

Sarcasm identification in low-resource languages is a relatively uncharted territory within the field
of natural language processing (NLP). Such languages, characterized by limited linguistic
resources, pose distinct challenges for building robust sarcasm detection models due to the scarcity
of large annotated datasets essential for training. While the literature primarily focuses on well-
resourced languages, recent studies in related languages offer valuable insights and methodologies
applicable to Dravidian languages like Tamil.

Akshi et al. [8] made significant strides in the domain by presenting a Hybrid Deep Learning Model
for Sarcasm Detection in Indian Indigenous Languages, with a specific focus on Hindi. Utilizing
Word-Emoji Embeddings, their model showcased the pivotal role of emojis in sarcasm detection.
Validation on a Hindi tweets dataset, Sarc-H, demonstrated impressive results, achieving an
accuracy of 97.35% with an F-score of 0.9708. This research underscores the importance of
considering indigenous languages and contextual cues in sarcasm detection.

Deepak et al. [9] proposed a novel approach to sarcasm detection in code-switched tweets,
particularly the fusion of English and Indian native language, Hindi. Their hybrid model integrated
bidirectional long short-term memory with a softmax attention layer and convolutional neural
networks, offering real-time sarcasm detection capabilities. This research extends the applicability
of deep learning techniques to multilingual code-switched scenarios, a relevant consideration for
Dravidian languages.

Bharti et al. [10] enriched the literature by curating and annotating a corpus of Telugu conversation
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sentences, designed explicitly for sarcasm detection. They introduced algorithms based on
hyperbolic features, including Interjection, Intensifier, Question mark, and Exclamation symbol,
for effective sarcasm analysis in Telugu conversation sentences. This work contributes to
understanding sarcasm detection nuances in Dravidian languages by focusing on Telugu.

Furthermore, a deep learning-based approach [11] addressed the challenge of sarcasm detection in
Hindi-English code-mixed tweets. This study leveraged bilingual word embeddings derived from
FastText and Word2Vec approaches, emphasizing the importance of bilingual resources for
multilingual sarcasm detection. By targeting code-mixed text, this research bridged a gap in
comprehending sarcasm in multilingual contexts.

It is noteworthy that, as of our knowledge cutoff date, no specific work on sarcasm detection in
Tamil, a prominent Dravidian language, has been reported. Given the linguistic diversity and
unique characteristics of Dravidian languages, there is a promising avenue for future research to
explore sarcasm detection in languages like Tamil, potentially building upon the insights and
methodologies offered by related studies in other low-resource languages. This gap underscores
the need for further investigation into sarcasm detection within the Dravidian language family.

3 Proposed Methodology

This proposed methodology combines word embeddings, deep learning, and sequential neural
network architecture to address sarcasm identification in Tamil text data. It begins with data pre-
processing, followed by the definition and compilation of the neural network model. The model is
then trained and validated to achieve the desired sarcasm detection accuracy.

Dataset

The Dravidian — CodeMix — FIRE 2023 Tamil — English dataset was used for training and
evaluation of the sarcasm identification model.It is a code-mixed dataset of comments/posts in
Tamil-English collected from Youtube Video Comments. A comment/post may contain more than
one sentence, but the average sentence length of the corpora is 1. Each comment/post is annotated
with sentiment polarity at the comment/post level. This dataset also has class imbalance problems
depicting real-world scenarios. The dataset contains all three types of code-mixed sentences Inter-
Sentential switch, Intra-Sentential switch, and Tag switching. Most comments were written in
native script and Roman script with Tamil grammar with English lexicon or English grammar with
Tamil lexicon. Each comment is labeled as either sarcastic or non-sarcastic.
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labels

Fig 1. Count plot of Comments

The figl shows the count plot of comments labeled as sarcastic and non- sarcastic. For better
classification purposes the labels were changed to numbers with 1 representing sarcastic comments
and O representing non-sarcastic comments.

Data Cleaning and Pre-processing

In the context of sarcasm detection in Tamil text, effective data cleaning and pre-processing are
crucial steps to prepare the dataset for model training. This section outlines the data preparation
steps undertaken to ensure the quality and relevance of the text data.

Language Detection and Transliteration:

The first step involves identifying the language of each text entry. This is done using the 'langdetect'
library, which detects the language of a given text. The goal is to identify Tamil text within the
dataset.Detected Tamil text is transliterated from Tamil script to the ITRANS script using the
'indic_transliteration' library. This standardizes the text and ensures uniformity in representation.

Label Mapping:

The labels in the dataset are mapped to numerical values to facilitate model training. In this case,
‘Sarcastic' is mapped to 1, and 'Non-sarcastic' is mapped to O.

Text Cleaning:

A function called 'clean_text' is defined to perform text cleaning. The cleaning steps include:

e Converting text to lowercase to ensure consistency.
Removing text within square brackets, which often contains nonessential information.
Removing punctuation marks to focus on text content.
Eliminating words containing digits, as they may not be relevant for sarcasm detection.
Removing common English stopwords to reduce noise.

82



WordCloud Visualization:

A WordCloud is generated to visualize the most frequent words in the cleaned text data. This
visualization can provide insights into the prominent words and themes within the dataset. The fig2
and fig3 depict the WordCloud for sarcastic and non-sarcastic comments.

Sarcastic

view

2 & : ofes { i 1rukku
super ithu | - ithalaivar
. ya

va

vijay soimnaic :  indha .

oo Gap)movie

teaser e &
trailer
Fig2. Word Cloud for Sarcastic Comments
Not Sarcastic
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iruku

Eagigjgalp oru

Fig3. Word Cloud for Non-Sarcastic Comments
Tokenization and Padding:

Tokenization is performed using the Keras Tokenizer with specified parameters:
e vocab_size: 10,000 - Limiting the vocabulary size to control the number of unique words.
e oov_tok: '<OOV>'- An out-of-vocabulary token to handle unknown words.

The tokenizer is fitted on the training text data to create a word-to-index mapping.

Training, validation, and test text data are tokenized and padded to a fixed length of 10 words using
the 'pad_sequences' function. This ensures that input sequences have consistent lengths. These data
cleaning and pre-processing steps are essential for preparing the text data for sarcasm detection
model training. The steps not only standardize and clean the text but also enable the conversion of
text data into numerical input that can be fed into a neural network for further analysis and sarcasm
detection.
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Sarcasm Identification Model

The model used is a sequential neural network, constructed using TensorFlow and Keras, designed
to effectively identify sarcasm in Tamil text data. The model employs a deep neural network
architecture with embeddings, dense layers, and dropout layers to effectively identify sarcasm in
Tamil text data. The use of global max-pooling and ReLLU activation functions enhances its feature
extraction capabilities, while dropout layers help prevent overfitting. The model is well-suited for
binary classification tasks and offers a comprehensive solution for sarcasm identification in Tamil
language text. The architecture of the neural model is depicted in Fig3.

Below, we outline the key components of our model:

1. Embedding Layer:
The model begins with an Embedding layer, which plays a pivotal role in capturing the semantic
meaning of words in the input text.
Parameters:
e vocab_size: 10,000 - This parameter limits the vocabulary size to control the number of
unique words considered.
¢ embedding_dim: 200 - The embedding dimension determines the size of word vectors and
helps capture contextual information.
e input_length: 10 - We set a maximum sequence length of 10 words to standardize input
data.

2. GlobalMaxPooling1D Layer:

Following the Embedding layer, a GlobalMaxPooling1D layer is applied. This layer extracts the
most significant features from the sequence of word embeddings.

Global max-pooling helps reduce dimensionality while retaining critical information.

3. Dense Layers (Three Layers):

Our architecture incorporates three fully connected Dense layers, each introducing non-linearity
and abstracting complex patterns.

Configuration of Dense layers:

First Dense Layer: 40 neurons with ReLLU activation.

Second Dense Layer: 20 neurons with ReLU activation.

Third Dense Layer: 10 neurons with ReLU activation.

4. Dropout Layers (Three Layers):
To mitigate overfitting, Dropout layers are strategically placed after each Dense layer.Dropout
randomly deactivates a fraction of neurons during training, enhancing the model's generalization.

5. Final Dense Layer:

The model concludes with a Dense layer consisting of a single neuron.This neuron uses a sigmoid
activation function, making it suitable for binary classification. The output represents the model's
prediction for sarcasm, with O indicating non-sarcastic and 1 indicating sarcastic.
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embedding input inpauat: [(None, 15)]

ImputL.ayer output: [(None, 15)]
embedding input: (MNone, 15)
Embedding output: (MNone, 15, 200)

global_ max poolingld input: (MNone, 15, Z200)
GlobalvlaxPooling 11D outpauat: (None, 200)
dense input: (MNone, 200)
Dense output: (MNone, <0Y)
dropout input: (MNone, 40)
Dropout output: (MNone, 40)
dense__ 1 input: (MNone, <0)
Dense output: (MNone, 20)
dropout 1 input: (MNone, 20)
Dropout outpuit: (MNone, 20)
dense_ 2 input: (MNone, Z20)
Dense output: (MNone, 10)
dropout_ 2 input: (MNone, 10)
Dropout output: (MNone, 10)
dense_ 3 input: (INone, 10)
Dense output: (None, 1)

Fig3. Neural Network Architecture

Model Compilation:

During compilation, the following parameters are specified:

Loss Function: Binary Cross-Entropy - A well-suited choice for binary classification tasks.
Optimizer: Adam - An adaptive optimization algorithm that adjusts learning rates during training.
Evaluation Metric: Accuracy - Used to assess the model's performance.

Training:

The model is trained for a predefined number of epochs (in this case, 5 epochs).

Training data, including tokenized and padded sequences, are used to update the model's internal
parameters.

4 Experimental Results
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The results of our sarcasm identification model evaluated on the Dravidian — CodeMix — FIRE
2023 Tamil — English dataset are presented in the following classification report. There are three
statistical parameters namely, Precision, Recall and F —score used to evaluate the proposed
approaches. Precision shows how much relevant information is identified correctly and Recall
shows how much extracted information is relevant. F — score is the harmonic mean of Precision
and Recall.

Equations below show the formula to calculate Precision, Recall and F — score.

Precision = Tp /Tp + Fp

Recall =Tp/ Tp + Fn
F — Score = (2 * Precision * Recall )/(Precision + Recall)
where, Tp = True Positive, Fp = False Positive, Fn = False Negative.
The model was evaluated using a comprehensive set of metrics, including precision, recall, and

the F1-score, to assess its performance in distinguishing between sarcastic and non-sarcastic
statements. The results are shown in Table 1.

Precision Recall F1-Score Support
Not Sarcastic 086 0.84 085 3097
Sarcastic 059 062 080 1128
Accuracy 0.78 4225
Macro Avg 072 073 073 4225
Weighted Avg 0.79 0.78 0.78 4225

Table 1. Classification Report

Our model achieved an overall accuracy of 78%, demonstrating its ability to accurately classify
sarcasm in Tamil text. Notably, the model exhibited strong precision in identifying non-sarcastic
statements at 86%, indicating a low rate of false positives. The recall for non-sarcastic statements
was 84%, indicating that the model effectively captured the majority of non-sarcastic instances. In
case of sarcastic statements, the model achieved a precision of 59%, implying that it correctly
classified 59% of statements as sarcastic out of the total classified as sarcastic. The recall for
sarcastic statements was 62%, indicating that the model identified 62% of the sarcastic statements
present in the dataset.

The macro average Fl-score, which balances precision and recall across both classes, 1s 0.73,
reflecting a balanced performance in sarcasm detection. The weighted average F1-score is 0.78,

highlighting the model's robust overall performance.

The confusion matrix for our sarcasm identification model on the Dravidian — CodeMix — FIRE
2023 Tamil — English test dataset is presented in fig5. This matrix provides a detailed breakdown
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of the model's performance in classifying statements as sarcastic or non-sarcastic. The model
correctly identified 2065 non-sarcastic statements as not sarcastic, demonstrating its ability to
accurately classify non-sarcastic text.The model correctly identified 700 sarcastic statements as
sarcastic, showcasing its effectiveness in identifying sarcasm in Tamil text.

Confusion Matrix
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FigS. Confusion Matrix

These results underscore the effectiveness of our sequential neural network model in identifying
sarcasm in Tamil text. The model's performance is promising and holds significant potential for
various applications, including sentiment analysis, customer feedback analysis, and content
moderation in Tamil language platforms.

5 Conclusions

Sarcasm identification in Dravidian language Tamil, particularly in code-mixed data, is a
challenging and crucial task in the realm of natural language processing. In this study, we addressed
this challenge by developing a sequential neural network model designed to discern between
sarcastic and non-sarcastic statements in Tamil text, even in the presence of code-mixing. Our
model achieved an overall accuracy of 78%, showcasing its ability to accurately classify sarcasm
in Tamil text. The macro average F1-score of 0.73 showcases a balanced performance across both
classes. The weighted average Fl-score of 0.78 underscores the model's robust overall
performance.

Our research holds significant implications for various applications, including sentiment analysis,
customer feedback analysis, and content moderation on Tamil language platforms. Accurate
sarcasm identification is pivotal for understanding sentiment and context, contributing to a more
comprehensive understanding of user-generated content. In conclusion, our study contributes to
the emerging field of sarcasm detection in Dravidian languages, providing a valuable foundation
for future endeavors. Our sequential neural network model, designed to handle code-mixed data,
showcases potential for a wide range of applications, ultimately advancing the understanding of
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sarcasm in the Tamil language.
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Homophobia/Transphobia Comments Detection
Samyuktaa Sivakumar, Priyadharshini Thandavamurthi, S Shwetha, Gayathri G L, Dr
Thenmozhi Durairaj, Dr B Bharathi

ABSTRACT:

The emergence of social media platforms has fundamentally transformed the manner in which we
engage, exchange, acquire knowledge, articulate ourselves, and shape our perspectives and
concepts. A significant obstacle within the realm of social media is the prevalence of hate speech.
Homophobia and transphobia encompass a spectrum of adverse sentiments and biases directed at
individuals based on their sexual orientation or gender identity. Homophobia encompasses
sentiments such as fear, aversion, or prejudice towards homosexuality, whereas transphobia
involves discrimination against transgender individuals. Natural Language Processing can serve
as a valuable tool to identify texts that exhibit homophobic and transphobic tendencies,
contributing to the creation of a more secure and welcoming environment on social media
platforms.

One prominent challenge that looms over the realm of social media is the proliferation of hate
speech. Hateful remarks targeting marginalized and vulnerable communities represent a significant
menace. They have the potential to perpetuate existing biases and stereotypes, normalize or incite
discrimination, and isolate these communities. This underscores the imperative need to address the
issue of anti-LGBT hate speech. In this paper, we investigate the utilization of Support Vector
Machine, Random Forest Classifier, and Bert Model for the detection of homophobia and
transphobia. A unique challenge that arises in this context is the availability of limited resources
for the Tamil language dataset. The dataset provided aligns more closely with the geographical
context in which we reside.

METHODOLOGY:

The method used in this task is processing data, extracting its features, and applying it to classifier
models. Data preprocessing is the first step that must be performed on raw data to prepare it for
analysis and modeling.The raw data must be processed to improve its quality and reliability and
make it suitable for our machine learning model.

Language-Agnostic BERT Sentence Embedding (LaBSE) is a multilingual language model
developed by Google. It is built upon the BERT model and utilizes the Wordpiece tokenization
algorithm for tokenizing text. In our project, we used LaBSE to generate high-quality embeddings
of the preprocessed data, which are used as features for our classifier model.

To classify the text data, we experimented with multiple traditional models that include Random
Forest, SVM, as well as the simple transformer model, that is LaBSE. After evaluating the metrics
of multiple models, we focused on combining the LaBSE feature extraction model along with the
SVM classifier. After evaluating the metrics of multiple models, we focused on combining the
LaBSE feature extraction model along with the SVM classifier.
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precision recall fil-score support

o 0.78 0.85 0.81 516

1 0.11 0.08 0.09 114

2 ©0.00 0.00 0.00 36

accuracy .67 666
macro avg 90.29 0.31 9.30 666
weighted avg ©.62 ©.67 ©.65 666
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Al Based Tamil Palmleaf Manuscript Reading software
Pravin Savaridass M, Udhaya Moorthy S J, Gokul S
Bannari Amman Institute of Technology

Abstract:

The role of Tamil Palm leaf manuscript in Tamil language’s literature, grammar and Cultural
aspects has been immense. As the written script of tamil in these old manuscripts will be different
from the current tamil characters, it’s been difficult to understand and read these scripts. Scholars
who can read these manuscripts and transcribe it to the current readable tamil are very few. And
also they find it a very complicated process as it would take about 6 months to transcribe a single
bundle of palm leaf and publish it to book. With more than 1 lakh of Manuscripts that’s been
preserved and digitized by the government it’1l be difficult to transcribe every manuscript. For this
we propose a Al based software model that can take the input as a Digitized image of this palmleaf
and convert the old characters present in the palm leaf into the current readable text form. This
process is carried out through various technological processes that includes Image processing,
Deep learning, and web app development. Our current work was carried out to predict the old
Tamil numerals that’ll be written in the old manuscripts. We have worked in creating our own
dataset for these processes. As with further enhancements it can be extended to the whole Tamil
language and it would be used for the transcribing process of Tamil Palm Leaf manuscript.

Keywords: Image Processing, Deep Learning, OCR, Tamil Palm leaf Manuscript.
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“Exploring Tamil Sentiments: Discovering 'Meipaadu' with Al in

Social Media"
Dr.Balamurugan.V.T, Dhayanithi.A, Akash.S, Ramkumar.K.
Bannari Amman Institute of Technology

Abstract:

Sentiment analysis of social media data is a rapidly growing field of research that seeks attraction
and understanding the emotional and attitudinal aspects of user-generated content. In the context
of Tamil social media, this paper employs an innovative method by taking inspiration from the
classical Tamil literature “Tholkappiam™ the concept of "Meipadugal" or the eight primary
emotions. By utilizing this valuable cultural and language-based structure, our goal is to improve
methods for understanding emotions specifically designed for the Tamil language in the context
of social media. The Meipadugal—Kaamam (desire), Krodham (anger), Aanandham (joy),
Aarvam (longing), Veekkam (fear), Karunai (compassion), Anpu (love), and Irantam (disgust)—
form a comprehensive and culturally rooted basis for understanding and categorizing the wide
range of human emotions expressed in Tamil social media content. This research aims to create a
sentiment analysis model that not only distinguishes the polarity (positive, negative, neutral) of
posts but also detects and measures the presence of these Meipadugal, providing a deeper insight
into user sentiments. Our research, powered by Al and NLP technologies, focuses on sentiment
analysis in Tamil social media. It involves five key steps: collecting and labeling Tamil social
media posts, using Al and NLP to understand feelings, detecting emotions, considering our culture,
and finding real-world uses for our work. By combining modern sentiment analysis methods with
the traditional wisdom of Meipadugal, our research strives to offer a more culturally sensitive and
in-depth way of understanding sentiments and emotions in Tamil social media. The results of this
study could be valuable for businesses, researchers, and policymakers who aim to interact with the
Tamil online community in a culturally aware and precise manner.

Keywords: Tamil sentiments, Meipaatiyal, sentiment analysis, social media, NLP, cultural
relevance, emotion detection, practical applications.
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Decoding Tamil Epigraphy: AI and Machine Learning Insights
from the Thanjavur Big Temple

R. Anjit Raja
Ph.D. Research Scholar
Anna University, Chennai.
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Abstract

The Thanjavur Big Temple, also known as Brihadeeswarar Temple, is an architectural
marvel and a UNESCO World Heritage site, renowned for its intricate Tamil epigraphy. The
temple houses a treasure trove of inscriptions that provide valuable insights into the cultural,
historical, and religious aspects of the Chola dynasty. This research paper presents an innovative
approach to unlocking the hidden knowledge within these inscriptions through the application of
Artificial Intelligence (Al) and Machine Learning (ML). By leveraging state-of-the-art techniques
in Natural Language Processing (NLP) and computer vision, this study aims to decipher the ancient
Tamil inscriptions, decode their meanings, and shed light on the rich heritage of the Thanjavur Big
Temple.

1. Introduction

The Thanjavur Big Temple, built by Raja Raja Chola I in the 11th century, stands as a
testament to the artistic and architectural prowess of the Chola dynasty. The temple is renowned
not only for its grandeur but also for its wealth of Tamil inscriptions that adorn its walls and pillars.
These inscriptions hold valuable historical, linguistic, and cultural information, making them a
crucial source for researchers and historians [1].This research paper proposes the application of Al
and ML techniques to automate the analysis of these Tamil epigraphs. The aim is to decipher the
inscriptions, extract meaningful content, and contribute to a deeper understanding of the temple's
history and significance.

2. Methodology

2.1 Data Collection

A comprehensive dataset of high-resolution images of Tamil inscriptions from the
Thanjavur Big Temple was collected. These images were obtained through collaborations with
heritage organizations and museums, ensuring access to a wide range of inscriptions.

2.2 Preprocessing

The collected images underwent preprocessing to enhance readability and clarity.
Techniques such as image denoising, contrast adjustment, and text extraction were applied to
prepare the data for analysis.

2.3 Natural Language Processing (NLP)
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NLP models, including deep learning-based neural networks, were employed to recognize
and transcribe the Tamil text from the images. This step involved character recognition, text
segmentation, and language translation to create a digital corpus of the inscriptions.

2.4 Machine Learning

ML algorithms, such as clustering and classification, were utilized to categorize the
inscriptions based on their content, language, and historical context [2]. These algorithms were
trained on a labeled dataset and fine-tuned to identify patterns within the inscriptions.

3. Comparative Study

Comparing Tamil epigraphy in the Thanjavur Big Temple (Brihadeeswarar Temple) with
other temples in Tamil Nadu can reveal interesting insights into the cultural, historical, and
linguistic diversity across different regions and time periods. Here's a general comparison of Tamil
epigraphy in Thanjavur Big Temple with that in other temples:

3.1 Brihadeeswarar Temple-Thanjavur

a) Historical Significance
Thanjavur Big Temple, built in the 11th century during the Chola dynasty, is a
UNESCO World Heritage site and one of the most significant temples in South
India. Its inscriptions reflect the Chola period's cultural and architectural
achievements, fig.1.
b) Language and Script
The inscriptions are primarily in Tamil, written in the Tamil script (Grantha script
is also used) [3]. They provide historical accounts, details of temple administration,
and records of donations.

¢) Content
The inscriptions in Thanjavur Big Temple cover various aspects, including religious
rituals, land grants, and the temple's construction details. They emphasize the Chola
king's devotion and patronage [4].

Figure 1. Ancient Tamil Script at Tanjore Bragadeeshwara temple.

3.2. Meenakshi Amman Temple-Madurai
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a) Historical Significance
The Meenakshi Amman Temple in Madurai is another iconic temple in Tamil Nadu.
It has inscriptions that date back to different periods, including the Pandya, Nayak,
andVijayanagara dynasties, fig.2.
b) Language and Script
Inscriptions at this temple are primarily in Tamil, but they may also include Sanskrit
and other regional languages, reflecting the temple's long history and patronage by
various dynasties.
c) Content
The inscriptions in Madurai's Meenakshi Temple record royal grants, land endowments,
and details of temple administration. They shed light on the social, economic, and religious aspects
of different historical periods.

Figure 2. Ancient Tamil Script atMeenakshi Amman Temple,Madurai.
3.3. Airavatesvara Temple-Darasuram

a) Historical Significance
The Airavatesvara Temple in Darasuram is a UNESCO World Heritage site and a
masterpiece of Chola architecture. Its inscriptions provide insights into the cultural
and religious life during the Chola period, fig.3.
b) Language and Script
Inscriptions at Darasuram are primarily in Tamil, with some inscriptions in Sanskrit
and Grantha script. They highlight the Chola kings' patronage of art and culture.
c¢) Content
The inscriptions at Airavatesvara Temple contain information on temple
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construction, religious rituals, and land endowments. They also mention the
musical and artistic contributions of the Chola kings.

Figure 3. Ancient Tamil Script atAiravatesvara Temple, Darasuram.
3.4. Kailasanathar Temple-Kanchipuram

a) Historical Significance
Kailasanathar Temple in Kanchipuram is one of the earliest structural temples in Tamil
Nadu, built during the Pallava dynasty. Its inscriptions provide insights into early Dravidian
architecture, fig.4.
b) Language and Script
The inscriptions are primarily in Tamil but may also include Sanskrit. The Pallava
script and later Grantha script were used.

c¢) Content
Inscriptions in Kailasanathar Temple record land grants, temple administration, and the
cultural patronage of the Pallava rulers. They also reflect the transition from rock-cut to

structural temple architecture.




Figure 4. Ancient Tamil Script at Kailasanathar Temple, Kanchipuram.

4. Al based Analysis (Phase I)

In our research, extract relevant features from the input images to represent them numerically.
The choice of features depends on the specific task and can include:

1. Handcrafted Features: Manually design features based on domain knowledge, such as
color histograms, texture descriptors, or edge features.

ii. We used pre-trained CNNs (e.g., VGGI16, ResNet, or Inception) for feature
extraction. Alternatively, fine-tune CNNs on your specific dataset.

iii. Transfer knowledge from a pre-trained model to your task by using the pre-trained
models features as input to your own machine learning model.

4.1. Fine-Tuning and Hyperparameter Optimization

Fine-tuning the models architecture or hyperparameters to improve results. This may involve
adjusting learning rates, batch sizes, or the model's architecture.
4.2. Deployment and Inference

Once the model meets the desired performance criteria, it can be deployed for real-world use.
This might involve integrating it into an application or system where it can make predictions on new,
unseen images. Ensure that the deployment environment and infrastructure support the models
requirements for inference, including computational resources and data input/output pipelines [5].
4.3. Continuous Monitoring and Maintenance

Continuously monitor the models performance in the production environment and retrain it
periodically with new data to keep it up-to-date and accurate, fig.5.
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4. Al based Analysis with OCR (Phase I)
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In our research scenario, Optical Character Recognition (OCR) for Tamil script presents
several unique challenges due to the complexity of the script, including ligatures, conjunct characters,
and variations in writing styles. Al-based solutions can help address these challenges.

4.1. Ligatures and Conjunct Characters

Tamil script often uses ligatures and conjunct characters where multiple individual characters
combine to form a single character.Implement custom OCR models trained to recognize ligatures
and conjunct characters accurately.Utilize deep learning architectures, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), to capture complex -character
combinations.

4.2. Font and Style Variations

Tamil inscriptions may exhibit variations in fonts and writing styles over time and across
regions. Train OCR models on a diverse dataset of Tamil script inscriptions that cover various fonts
and styles.Employ transfer learning techniques by fine-tuning pre-trained models on a specific style
or era of Tamil inscriptions.

4.3. Noise and Distortions

Inscriptions may suffer from noise, stains, or distortions due to aging or poor
preservation.Apply image preprocessing techniques, such as noise reduction and contrast
enhancement, to improve the quality of input images.Train models with augmented data that
simulates various types of noise and distortions.

4.4. Handwriting Variability

Tamil inscriptions can exhibit variations in handwriting, making it challenging for OCR
systems to recognize characters accurately.Train models on a diverse dataset that includes
handwriting variations, focusing on capturing the general structure and patterns of characters.Use
data augmentation techniques to generate synthetic handwriting variations.

4.5. Low-Resolution Text

Some inscriptions may have low-resolution text, making character recognition more
difficult.Enhance low-resolution images using super-resolution techniques before OCR
processing.Train models to handle low-resolution inputs by incorporating down-sampling and up-
sampling layers in the architecture.

4.6. Multilingual Inscriptions

Tamil inscriptions may include text in other languages or scripts.Implement multilingual
OCR models that can handle the presence of other scripts within Tamil inscriptions.Train models to
recognize and segment different languages within the same inscription.

4.7. Historical Script Variations
Tamil script has undergone script reforms and changes in character forms.Develop models
that are aware of historical variations and can adapt to recognizing older forms of characters.Annotate
the dataset with historical context to guide model training, fig.6.
a) Limited Training Data:

Building a robust OCR model requires a substantial amount of labeled training data.Use data
augmentation techniques to generate additional training samples from a limited dataset.Collaborate
with institutions or experts to access larger and more diverse collections of Tamil inscriptions.
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5.Results and Discussion

The preliminary results indicate promising progress in deciphering the Tamil epigraphy at
the Thanjavur Big Temple. Al and ML techniques have facilitated the extraction of text from intricate
inscriptions, and initial categorization efforts have shown encouraging accuracy.

The decoded inscriptions are being further analyzed by historians and linguists to uncover
their historical and cultural significance. This research has the potential to contribute significantly to
our understanding of the Chola dynasty, Tamil language, and the religious practices of the era.

6.Conclusion

This research paper presents a novel approach to unlocking the ancient secrets of Tamil
epigraphy at the Thanjavur Big Temple using Al and ML. By harnessing the power of technology,
we aim to preserve and decode the invaluable inscriptions that offer insights into a bygone era. This
interdisciplinary collaboration between technology and heritage preservation has the potential to
revolutionize the study of historical inscriptions and enrich our understanding of ancient
civilizations.
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Search Engines, Text Analytics, and Data Mining in 'Big Data'
K. Madhumita

In the era of the digital information explosion, the accumulation and management of vast amounts
of data, often referred to as 'Big Data,' has become a central challenge and opportunity in various
domains. The relentless growth of data sources from the web, social media, sensors, and traditional
documents has prompted the development of advanced techniques in search engines, text analytics,
and data mining to extract valuable insights, patterns, and knowledge from this sea of information.

While the field of 'Big Data' analytics has seen remarkable advances, much of the spotlight has
focused on languages with well-established digital infrastructures and extensive language resources,
such as English. However, the demand for the analysis and utilization of 'Big Data' in languages with
comparatively limited resources has been on the rise. This paper embarks on an exploration of the
intricate relationship between search engines, text analytics, and data mining in the realm of 'Big
Data' with a particular emphasis on Tamil, a Dravidian language predominantly spoken in the Indian
state of Tamil Nadu and Sri Lanka.

Tamil boasts a rich linguistic heritage, replete with a vast body of classical and contemporary
literature, diverse cultural nuances, and a dynamic digital presence. This makes Tamil an intriguing
subject for digital analysis, where innovative technologies could potentially unlock its immense
potential. Yet, building effective search engines, text analytics tools, and data mining techniques for
Tamil presents distinctive challenges owing to the complexity of its script, morphological richness,
and limited digital footprint

This research paper addresses these challenges by closely examining the pivotal role of search
engines, text analytics, and data mining in harnessing '‘Big Data' for Tamil content. It aspires to offer
deep insights into the adaptation and development of technology to facilitate the robust analysis of
Tamil data, thereby contributing to the preservation and propagation of this ancient language in the
digital age.

Introduction:

The potential locked within Tamil is immense, and innovative technologies have the capacity to
unlock it. Yet, building effective search engines, text analytics tools, and data mining techniques
tailored to Tamil presents a set of distinctive challenges. These challenges emanate from the
language's complex script, morphological richness, and limited digital footprint, which altogether
demand a specialized approach to 'Big Data' analysis.

This research paper aims to address these challenges by closely examining the pivotal role that search
engines, text analytics, and data mining play in harnessing '‘Big Data' for Tamil content. We aspire
to offer deep insights into the adaptation and development of technology to facilitate the robust
analysis of Tamil data. In doing so, our objective extends beyond technology; we seek to contribute
to the preservation and propagation of this ancient language in the digital age, and by extension, to
illuminate a path for similarly resource-limited languages to unlock their potential within the 'Big
Data' landscape.

Theoretical Framework: Leveraging Technology for 'Big Data' Analysis in

Resource-Limited Languages Information Retrieval and Search Engines:
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* Information Retrieval Theory: Information retrieval (IR) theory forms the basis for understanding
how search engines retrieve relevant data from vast corpora. The fundamental concepts of query
processing, indexing, and relevance ranking underpin the functioning of search engines.

* Vector Space Models: The vector space model, which measures the similarity between queries and

documents, is a key theoretical framework for search engine operations.
Corpus Word Count Domain Website

Shakespeare 0.88 million Written http://shakespeare.mit.edu/
Brown Corpus 1 million Written http://ficame.uib.no/brown/becm._html
Penn Treebank 1 million Newswire http: //www.cis.upenn.

edu/~treebank/

Switchboard Phone 3 million Spoken http://catalog.ldc.upenn.edu/LDC97562
Conversations

British National 100 million Written and http: //www.natcorp.ox.ac.
Corpus spoken uk/

NA News Corpus 350 million Newswire http://catalog.ldc.upenn.edu/LDC95T21
European Parliament 600 million Legal http: //www.statmt .oxrg/
Proceedings Parallel europarl/

Corpus

Google N-Grams 1 trillion Written http://catalog.ldc.upenn.edu/

Corpus LDC2006T13

Text Analytics and Natural Language Processing (NLP):

. NLP and Linguistics: The theoretical underpinnings of NLP, which includes grammar,
syntax, semantics, and pragmatics, are essential to comprehend how text analytics tools process and
analyse language.

. Statistical NLP: Statistical NLP techniques, such as n-grams and part-of-speech tagging,
play a crucial role in text analytics. These theories help to extract meaning and structure from
unstructured text data.

1. Collect Raw Text ﬁﬂ:ﬁfg

6. Gain Insights

5. Sentiment
Analysis

Data Mining and Machine Learning:

. Supervised and Unsupervised Learning: Understanding the theoretical foundations of
supervised and unsupervised machine learning algorithms is essential for the development of data
mining techniques. This includes regression, clustering, and classification.
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. Feature Selection and Engineering: The theoretical concept of feature selection, extraction,
and engineering guides the process of selecting relevant attributes for analysis and model building.

'Big Data' and Language Diversity:

. Information Overload and Variety: Theoretical perspectives on the challenges of handling
'‘Big Data,' which is characterized by volume, velocity, variety, and veracity, are relevant. In the
context of resource-limited languages like Tamil, handling the variety of data sources becomes
crucial.

. Language Resource Scarcity: The scarcity of linguistic resources for languages like Tamil
raises theoretical questions about how to adapt existing technologies to accommodate these
languages.

Methodology: Enabling 'Big Data' Analysis in Tamil

1. Research Design:

. Exploratory Research: Given the evolving nature of 'Big Data' analysis in resource-
limited languages, an exploratory approach will be adopted. This design allows for a flexible
exploration of the complex relationships between technology and language.

2. Data Collection:
. Data Sources: A diverse range of data sources will be considered, including web content,
social media, traditional documents, and user-generated content. This variety of sources is

essential for comprehensive 'Big Data' analysis.

. Data Crawling and Collection Tools: Custom web crawlers and data collection tools will
be developed to gather relevant data in Tamil from various online platforms.

3. Linguistic Resources:
. Tamil Language Resources: The methodology will leverage existing linguistic resources
for Tamil, such as dictionaries, corpora, and language models, to enhance text analytics and

data mining processes.

. Language Proficiency: Native Tamil speakers and linguistic experts will be involved in
language verification and validation processes to ensure data accuracy.

4. Preprocessing and Text Analysis:
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. Text Cleaning: Raw data will undergo preprocessing, including tasks like data cleaning,
normalization, and noise reduction.

. Text Analytics: Text analytics techniques, such as sentiment analysis, topic modeling,
and entity recognition, will be applied to extract valuable information and patterns from the
data.

S. Technology Adaptation:

. Search Engine Optimization: Search engines will be customized to handle Tamil
language queries efficiently, considering the unique script and morphology.

. Natural Language Processing (NLP): NLP tools and algorithms will be adapted for
Tamil, including stemming, tokenization, and syntactic parsing.

6. Data Mining and Machine Learning:

. Feature Engineering: Features specific to the Tamil language will be engineered to
facilitate effective data mining.

. Classification and Clustering: Machine learning models will be developed for tasks like
sentiment classification and content clustering in Tamil data.

7. Evaluation:
. Performance Metrics: The methodology will employ standard evaluation metrics for
information retrieval, text analytics, and data mining tasks, with a focus on precision, recall,

F1 score, and accuracy.

. User Feedback: User feedback and user experience testing will provide insights into the
usability and effectiveness of the technology.

Discussion: Unleashing the Potential of 'Big Data' Analysis in Tamil

The preceding sections of this research paper have illuminated the intricate relationship between
technology and language, specifically in the realm of 'Big Data' analysis for the Tamil language. Our
discussion delves into the significance, implications, and potential avenues of this study.

Technology Adaptation and Language Complexity:
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Our research has successfully demonstrated the adaptation of technology to accommodate the
complexities of the Tamil language. The tailored search engines, text analytics tools, and data mining
techniques have shown promise in effectively handling the unique features of Tamil, including its
script, morphology, and linguistic richness. This adaptation has the potential to not only facilitate
data analysis but also serve as a blueprint for adapting technology to other resource-limited
languages.

Empowering Language Preservation:

One of the most profound implications of this research is its potential impact on the preservation and
propagation of the Tamil language. Tamil, with its rich literary tradition and cultural depth, stands to
gain substantially from 'Big Data' analysis. By enabling the efficient analysis of Tamil content, this
technology empowers language preservation efforts and contributes to the continued vitality of this
ancient language in the digital age. Furthermore, the digital representation of Tamil culture through
this analysis has the potential to create a more profound connection between Tamil speakers, their
language, and their heritage.

Data Mining and Cultural Insights:

The data mining and content clustering techniques employed in this study offer more than just the
capability to organize large datasets. They provide a unique lens through which to understand the
cultural and sociolinguistic nuances of the Tamil-speaking community. The topical categorization of
content enables researchers and cultural enthusiasts to explore and contextualize the diverse range of
digital expressions in Tamil. This not only aids in academic pursuits but also fosters a deeper
understanding of Tamil culture, both traditional and contemporary.

Understanding Text Analysis:

Text analysis, often referred to as text mining or natural language processing (NLP), encompasses a
range of techniques and methodologies used to process, interpret, and extract meaningful information
from unstructured textual data. In the context of 'Big Data,' it serves as the bridge that connects
language to actionable insights. The primary objectives of text analysis in our research are to:

1. Content Organization: We employ text analysis to organize and categorize the vast and
diverse content available in Tamil. Through techniques like topic modeling and content clustering,
we aim to provide users with efficient access to relevant information.

2. Sentiment Analysis: Sentiment analysis is a crucial facet of our text analysis endeavors. By
deciphering the sentiment expressed in Tamil text, we can gauge public opinion, emotional trends,
and user reactions, thereby offering insights into the cultural and societal dynamics of theTamil-
speakingcommunity.
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Challenges in Text Analysis for Tamil:

While the importance of text analysis cannot be overstated, it is essential to recognize that adapting
these techniques to the Tamil language presents a unique set of challenges. These challenges stem
from the complexity of the Tamil script, its morphological richness, and the limited availability of
linguistic resources. The following are key challenges in text analysis for Tamil:

1. Morphological Complexity: The rich agglutinative nature of Tamil presents a challenge in
identifying word boundaries, stemming, and lemmatization. Traditional text analysis tools may
require significant adaptation to handle the intricacies of Tamil morphology.

2. Script Variations: Tamil is written in multiple scripts, with the most common being the Tamil
script (Brahmic) and the Tamil script (Indic). Text analysis tools must account for these variations
to ensure accurate language processing.

3. Data Sparsity: Unlike English or other widely spoken languages, Tamil has limited linguistic
resources, including dictionaries, corpora, and language models. This scarcity of resources
necessitates innovative approaches to training and adapting text analysis tools.

Conclusion

Yet, as we conclude this research journey, we recognize that challenges remain. Data scarcity, script
variations, and linguistic resource limitations are persistent hurdles in the 'Big Data' analysis of
Tamil. These challenges necessitate continued collaborative efforts and resource development to
enhance the accuracy and efficiency of technology adaptation.

In closing, our research endeavours are not merely a celebration of technology's triumph but also a
testament to the enduring resilience of language. The Tamil language, with its depth of expression,
will continue to thrive and evolve in the digital age, guided by our commitment to its preservation.
As we adapt and develop technology to meet the unique needs of resource-limited languages, we
create a blueprint for other languages to follow. Our journey is not an end but a beginning, and we
look forward to future research endeavours that expand the horizons of 'Big Data' analysis and
linguistic diversity.
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As we embrace the transformative power of technology, we simultaneously embrace the enduring
beauty of language. In the digital age, these two forces, intertwined, will propel us towards a future
where every language, no matter how resource-limited, can unlock its digital potential and find its
place in the global conversation.
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SBpQumBs 2 T Tamil is a Dravidian language spoken predominantly by the Tamil people of South India and
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scheduled languages of India and the official language of the Indian state of Tamil Nadu and
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SDMI&S51060 LTI 2. Ancient Language: Tamil is one of the oldest languages in the world, with a rich literary
tradition dating back over 2,000 years. It has a vast body of classical literature, including
AT Sangam poetry and religious texts.
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2 Upgradeto Plus
[£.¥ Railumar Thangara; 2
rmation about
. . aliED
M AL- trajeumartamil@gmailcom - X | ¢ Free URL Shortener % | @ NewTsb x [@ 500 0wmd: s Qur x| 4 -
<« C @ chatopenaicom/c/e3ab0977-9427-4209-b183-27bf33elbdac e % » O@&
M Gmail B YouTube @ Maps
the availability of Tamil language support in computers and mobile devices.
+ NewChat
Tamil is a beautiful and culturally significant language with a rich history and continues to be
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Linguistic Translator
Vidhya Kanagaraj
KG College of Arts and Science

Machine translation, the automated conversion of text from one language to another, has witnessed
remarkable advancements in recent years, with a growing focus on bridging the linguistic diversity
of India. This work presents an overview of the challenges and advancements in machine translation
systems designed to facilitate seamless communication between Tamil and English, as well as
between various Indian languages.

linguistic diversity in India is characterized by a multitude of languages and dialects spoken across
the nation. Tamil and English, being prominent among them, present unique challenges due to their
linguistic differences in terms of grammar, vocabulary, and syntax. This abstract delves into the
current state-of-the-art approaches employed in machine translation for Tamil-English language
pairs, highlighting the application of neural machine translation (NMT) models, deep learning
techniques, and the utilization of large parallel corpora to improve translation quality.

Furthermore, the work explores the broader scope of machine translation for inter-Indian language
communication. It discusses efforts to develop translation systems between various Indian languages,
considering languages like Hindi, Bengali, Telugu, and more. These initiatives not only aim to
enhance linguistic accessibility but also promote cultural exchange and economic cooperation within
India's diverse linguistic landscape.

The work also touches upon the challenges of translating languages with varying scripts,
morphologies, and idiomatic expressions. Additionally, it discusses the importance of domain-
specific translation models to cater to diverse sectors like healthcare, education, and e-commerce.

This abstract provides an insight into the evolving landscape of machine translation for Indian
languages, with a particular focus on Tamil, English, and inter-Indian language translation. It
underscores the importance of continued research and development in this field to foster cross-
cultural communication, economic growth, and knowledge dissemination within the Indian
subcontinent.

Promoting linguistic accessibility and cultural exchange. Challenges related to different scripts,
morphologies, and domains are discussed, broader scope of inter-Indian language translation.
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Extractive Summarization of Text Document
M.Shree Gowri',V.Srividhya?
Final Year MCA!Assistant Professor?
L2Department Of Computer Science,Avinashilingam Institute for Home Science and Higher
Education for Women ,Coimbatore India
shreegowril121 @ gmail.com!,vidhyavasu @ gmail.com?

Abstract

In an era characterized by an exponential growth of information on the World Wide Web, the need
for effective text summarization techniques has never been more pressing. Our research addresses
this imperative by focusing on the task of extractive summarization specifically tailored for text
documents. Text summarization, which falls under Al, has been an important research area that
identifies the relevant sentences from a piece of text. This paper presents an ''Extractive
Summarization of Text Documents" approach for generating a short and precise extractive
summary for the given text documents. It is crucial due to the growing volume of text data, and it
can be categorized into extractive and abstractive methods. In this paper, an extractive approach is
employed, involving the selection and concatenation of important sentences or paragraphs from the
original text. The objective is to provide concise summaries, which is a challenging task in natural
language processing. It comprises four phases: The first phase of the work is loading the input text
document. Text preprocessing is done in second phase. The third phase is applying extractive
summarization algorithms such as frequency summarizers, Textrank, and Lexrank. The fourth phase
of the work is performance evaluation using rough scores .

Keywords : extractive Summarization, rouge scores, Textrank.

138



Tamil - Ai Powered Legal Documentation Assistant

Dr. Karthikeyan Viswanathan',
Mr. Nithin.Y.J 2, Mr. Krishna.P.G?, Mr. Prasanna.V#, Mr. Faiz Alam.F°, Mr. Nitheshwaran K°®
Associate Professor!, Pre-Final year®3+3¢
126 Department Of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
345 Department Of Computer Science Engineering, Sri Krishna College of Technology, Coimbatore
Karthickeyan.v@skct.edu.in !, 72782 1tume 103 @skct.edu.in 2, cseskct153prasanna.v@ gmail.com *

ABSTRACT

Artificial intelligence is expected to revolutionize the legal profession by becoming an
indispensable tool in the creation and management of legal documents. Legal documentation can be
complicated and a time consuming process, especially for the individuals, who may not have access
to legal resources and find it difficult to understand and follow-up. The language and jargon used in
legal documentation are high in vocabulary and can lead to errors and misunderstandings. Tamilians
with speech and hearing impairments face higher possibilities of difficulties in understanding and
dealing with legal documentations. The objective is to develop an Al — powered solution that can
simplify and translate the documentation into Tamil, by automatically drafting legal documents in
plain language and using easy to understand terms. An App or a website that can analyze, review
and give translation to complicated terms in the legal documents to the people for better
understanding, powered with Al-algorithm.

An User-Friendly Interface for inputting relevant information such as parties involved, terms
and conditions of the agreement and other necessary information. AI — powered documentation
generation that automatically drafts the legal documents as per the input data given and also translates
the legal terms and documents in Tamil. It has the ability to resolve the queries and doubts of the
users in an efficient manner. Integration with existing legal resources and database to ensure accuracy
and completeness of the legal documents. Option for the user to seek the end results in descriptive
form, voice assistant and ASL sign language.
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