
TERKA: Enabling Tamil script rendering
in .NET Micro Framework

Jan Kučera1,2, Vladimír Mach1, Dominik Škoda1, Matěj Zábský1
1 Faculty of Mathematics and Physics
Charles University, Czech Republic

2 Department of South and Central Asia
Charles University, Czech Republic

jan.kucera@matfyz.cz, vladimir@mach.im, dominik.skoda@gmail.com, matej@ihvar.cz

Abstract
In this paper, we present our contribution to the .NET Micro Framework that
enables complex script rendering on small, embedded devices, and we provide a
reference implementation for rendering the Tamil script. We also discuss the
design of Tamil bitmap fonts and suggest the smallest proportional font possible.

Keywords: embedded devices, text rendering, bitmap fonts, Tamil engine

Introduction and Overview
Microsoft .NET Micro Framework is an open source platform for developing small, resource
constrained devices, that emerged in Microsoft Research over 10 years ago. It allows
developers to leverage their existing knowledge of managed development and powerful
toolset to develop and debug embedded products rapidly.

On one side, hardware platforms like .NET Gadgeteer that build on top of the .NET Micro
Framework are used for rapid prototyping in commercial research [1] or at secondary schools
and universities for teaching students the basic principles of software development, hardware
engineering and industrial design [2]. On the other side, .NET Micro Framework is becoming
one of the technology backing up the Internet of Things development [3].

The framework comes with simple text rendering engine that uses highly optimized bitmap
font format with no support for complex scripts, glyph shaping, text directionality or
extended Unicode planes, effectively limiting the number of scripts and languages the .NET
Micro Framework can render.

Our Rendering Engine
We present a new, state-machine based rendering engine, which is an enhanced Turing
machine working on a tape of glyphs, as an in-place replacement for the engine currently in
use. Backward compatibility and minimum resources requirements were our main goals when
creating the engine.

First, we extend the current Tiny Font file format to support arbitrary number of appendix
blocks where all additional data such as language specific instructions can be stored. Each
Unicode plane is stored in separate appendix with the same format of characters in the Basic
Multilingual Plane. Glyphs that directly map 1:1 to characters are stored as the respective
characters themselves; additional glyphs are stored in the Supplemental Private Use Area
planes. This has the advantage of avoiding large character-to-glyph mapping tables.

The virtual tape of glyphs is then populated from the user’s string and machine rules are
executed on the tape. Rules can be grouped into features, usually corresponding to OpenType
features. Developers can turn on and off individual features during runtime, enabling fine
typography as a by-product of complex script rendering, to our knowledge the first time on
devices targeting such small amount of resources.

Each rule can be expressed as a function

where

 is a finite set of states, state ;
 is a finite set of conditions, condition ;
 is a finite set of parameters which condition accepts, ;
 is the current position on the tape;
 is a relative offset to at which the condition is evaluated;
 is a finite set of actions, ;
 is a finite set of parameters which action accepts;
 is a relative offset to at which the action is performed;

 is a number of glyphs to advance the tape with, .

Our OpenType Compiler
Since .NET Micro Framework is designed to run on devices with very small amount of
memory and computational power, we have designed the engine so that all information
required to render given script must be present in the font file. To save developers and font
designers considerable amount of work, we also present an OpenType compiler that analyses
the OpenType tables of standard fonts and converts them to the rendering engine state
machines.

First, the OpenType tables (GSUB and GPOS) are parsed and used to construct a state-
machine representation of the instructions, which is then optimized by merging equivalent
states into a single state and normalized to minimize space requirements of the final state-
machine.

Enabling Tamil Script
Some rendering systems, like Graphite or Apple Advanced Typography rely on shaping
instructions to be present in the font files themselves, while the rendering systems on
Windows platforms, like Uniscribe or DirectWrite, traditionally supply the language
knowledge needed to render particular script themselves.

To ensure maximum flexibility in the constrained .NET Micro Framework environment and
to prevent useless waste of memory and computation power for applications that do not
require rendering all languages at once, we have decided that the language knowledge must
be present in the font files.

Inspired by the work of Nedumaran [4], we have designed a state-machine representing the
language knowledge needed to render the Tamil script (see Figure 1). Each state transition

can be represented by a single rule, which gives us the total number of 7 rules needed for the
Tamil language, operating on a group of consonants (including the conjunct consonant ᾀ
which participates in glyph reordering) and vowel marks.

Note that the ᾯ ligature does not need to be included in the rules, as it does not form
syllables with other vowels. Both ᾀ and ᾯ ligatures as well as all other ligatures (puḷḷi, i,
i�, u, u�) are already part of the OpenType tables and will be automatically included by the
compiler discussed above.

The 7 language rules for Tamil are:

௧.

௨.

௩.

௪.

௫.

௬.

௭.

Figure 1. Tamil script state machine

Let’s demonstrate how the rendering engine works on the example of ெகா. The glyph tape is
initialized as follows:

க ெ◌ா

▲

The state-machine begins operation in the Entry state, and
reaches the consonant க. The rule ௧ applies, machine
switches to the SawConsonant state and advances the tape by
one.

க ெ◌ா

 ▲

At this position, the ெ◌ா mark is seen and rule ௨ applies.
The ெ◌ா mark is rewritten to the ெ◌ mark, state switched to
InsertingAA and tape advanced by one.

க ெ◌

 ▲

This time the unconditional rule ௭ applies, the mark ◌ா is
inserted, the machine is switched back to SawConsonant
state and tape advanced backwards.

Entry

SawConsonant

InsertingAA InsertingAU

ெ◌ா, ே◌ாெ◌ௗ

ெ◌, ே◌, ை◌

insert ◌ா insert ◌ௗ
rewrite to

ெ◌, ே◌
rewrite to

ெ◌

swap glyphs consonant

க ெ◌ ◌ா

 ▲

Here the only rule that matches is the rule ௫, which reorders
the two glyphs and moves the head again at the end of the
tape.

ெ◌ க ◌ா

 ▲

After all glyphs are processed, they are ready to be rendered
on the screen. Other consonant and vowel combinations
work in a similar fashion.

These language rules are supposed to be packed into a feature, applied after all other
OpenType shaping features. For Tamil, the standard order of features is documented on
Microsoft Typography website1.

Bitmap Fonts
Less constrained devices and computers deal with vector fonts easily. On the other side, small
microprocessors that work with bitmaps rarely deal with Unicode strings, not mentioning
supporting scripts like Tamil, and that resulted in lower interest in Tamil bitmap fonts.

The Latin alphabet and Tamil letters have different layout statistics and therefore cannot fulfil
the same expectations when designing text rendering systems and displays. For example, the
most common displays used to render Latin text have 5×7 dots per character, but even 3×5 is
readable.2 LED displays with various number of segments can be used to display not only
numbers but also text.

Can we do the same for Tamil? Can we use the common dot matrix displays to render Tamil
script? What are actually the minimum size requirements of Tamil script? Can we design
reasonable fixed-width Tamil font? We would like to bring attention of engineers and font
designers to these questions and provide some initial research in this area.

We are presenting a proportional Tamil font with the kernel
of 5×5 pixels on the baseline, surrounded by standard zone
of 2 pixels for vowel modifiers and extended zone of
additional 2 pixels to the right as illustrated in Figure 2,
needed only for the depicted ū variation. We tried to follow
the recommendations of M.M. Manivannan [5] as much as
possible.

The glyph with the finest structure horizontally — ᾏ —
requires 6 vertical lines and similarly ᾷ requires 5
horizontal lines, which defines the minimum required

resolution to avoid ink bleeding. Moreover, all consonants except ண fit into the 5×5 kernel,
which improves readability. The full letter chart is shown in Figure 3.

Our rendering engine is the first platform that supports glyph substitutions and reordering
while using bitmap fonts, so new skills might need to be developed for designing fonts for the
platform. For smallest font sizes, supplying combined glyph bitmaps might save more space
than manipulating glyphs using rules. The larger the font is the more beneficial is to reuse

1 http://www.microsoft.com/typography/otfntdev/tamilot/features.htm
2 See Windows Console font settings or http://robey.lag.net/2010/01/23/tiny-monospace-font.html

Figure 2. Minimum resolution for
Tamil glyphs: 11×9 pixels

glyphs (and even their position) as much as possible, which is fortunately in the nature of the
Tamil script. For example, Figure 4 shows reused ī modifier glyphs in the font.

Figure 3. Letter chart 11×9 pixels

Figure 4. Glyph reuse in ī syllables

Conclusion and resources
The Tamil script is the first complex script implemented for our open-sourced .NET Micro
Framework rendering engine, allowing engineers to create new Tamil-enabled devices, or to
power existing off-the-shelf displays to render Tamil text directly from Unicode encoding.
This can return Tamil to people on public places and further support the adoption of Unicode.

Handcrafted fonts always bring superior experience to those automatically rasterized, so we
started designing our own bitmap fonts and welcome both comments and other designers to
help us achieve pixel-perfect Tamil typography.

For full technical documentation and downloads, visit http://terka.microframework.cz/.

References

[1] N. Villar, J. Scott, S. Hodges, K. Hammil and C. Miller, “.NET Gadgeteer: A Platform for
Custom Devices”, in Proceedings of Pervasive 2012, Heidelberg, 2012.

[2] S. Hodges, J. Scott, S. Sentance, C. Miller, N. Villar, S. Schwiderski-Grosche, K. Hammil
and S. Johnston, “.NET Gadgeteer: A New Platform for K-12 Computer Science
Education”, in SIGCSE '13 Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, New York, 2013.

[3] R. Gangwar, “Internet of Things (IoT) on Microsoft”, Microsoft Corporation, 25 May
2014. [Online]. Available: http://blogs.msdn.com/b/rahul/archive/2014/05/25/internet-of-
things-iot-on-microsoft.aspx. [Accessed 1 July 2014].

[4] M. Nedumaran, “Building Tamil Unicode Fonts for Mac OS X”, in Tamil Internet 2009
Conference Papers, Cologne, 2009.

[5] M.M. Manivannan, “Notes on Tamil Orthography – puLLi, kAl, ai, ja, etc.”, in Tamil
Internet 2013 Conference Papers, Kuala Lumpur, 2013.

