

265

Natural Language Processing
(இயιைக ெமாழி பᾁᾺபாᾼᾫ)

266

267

An Efficient Tamil Text Compaction System

N.M..Revathi, G.P.Shanthi, Elanchezhiyan.K, T V Geetha,

Ranjani Parthasarathi & Madhan Karky

Tamil Computing Lab (TaCoLa),

College of Engineering Guindy, Anna University, Chennai.

haisweety18@gmail.com, jijutodo@gmail.com, madhankarky@gmail.com

Abstract

Tamil is slowly becoming the online language and mobile text messaging languages for many Tamils

around the world. Social networks and mobile platforms now extensively support Unicode and

applications for keying Tamil text. The number of characters in a text message is limited in some social

nets and mobile text messages. The need for compacting the text becomes essential as it translates to

saving online storage space, cost and many more factors. The paper proposes a text compaction

system for Tamil, a first of its kind in Tamil. The system proposed in this paper handles common

Tamil words, acronyms/abbreviations and numbers. Morphological analyzer [1] and Morphological

generator are used to stem inflexion words and replace them to compact using a mapping repository.

The proposed work is tested with over 10,000 words and it is found that the final result is reduced to

40% of the original text. The paper concludes by discussing possible extensions to this system.

1. Introduction:

In all languages, using compact or short form of words in text messages, emails, and blogs is rapidly

increasing. It is particularly popularly amongst young urbanities as it allows for voiceless

communication, useful in noisy environment that would defeat a voice conversation and also buffered

communication since the message the sender wants to convey can be accessed by the receiver at any

time. Compacting text is thus necessary because of limited message length in blog sites and tiny user

interface of mobile phone. Getting the shortest word has no rule and it is mainly aimed at

understanding. That is, those words should be understood by everyone. We can obtain the compact

words by omitting letters, replacing prefix and suffix of through suitable symbols and numbers. This

causes the compacted system to be credited with creating a language. The paper proposes a Text

Compaction system for Tamil, the primogenital in Tamil..

2. Background:

 Tamil is perhaps the only classical language, whose glorious literatures date back to the pre-Christian

era, has remained in continuous use for more than many millennia now. Due to the untiring efforts of

scholars, researches and enthusiasts, it has also evolved creatively over the years to the extent that it is

also used today profusely in computers, internet, mobile phone etc. Diverse creative efforts have been

taking place that would pave the way for a quantum jump in the usage of Tamil in Information

Technology. “Tamil Virtual University”, “Centre for Research and Applications of Tamil in Internet”,

268

“Tamil Software Development Fund” is to quote a few. These efforts paved the way for the motivation

of proposing Tamil compaction system in Tamil.

Many compaction systems have been developed for English and other languages. Lee Ming Fung in

[2] proposed a Short form Identification and Categorization model based on maximum entropy to

identify short forms from actual words and acronyms/abbreviations and categorize the short forms

into the short forms formed from letter omission and those formed through phonetic substitution of

parts of words. In the proposed system the compact words are formed in a diverse variety of ways

such as omission, truncation and phonetic substitution. Acronym Identification and detection has

been much researched. Acrophile in [3] automatically searches acronyms from acronym-expansion

pairs from domain specific databases. By acronyms expansion pairs, we refer to a pairs each

containing acronyms and their full expanded form or meaning. The paper makes use of acronym

expansion pairs to replace the full expanded form with the acronyms.

3. Text Compaction Framework:

 The figure below presents the various components of the framework.

3.1 Input Processing

The input text is tokenized based on a delimiter and is passed on to the Morphological Analyzer. The

analyzer removes the suffix (if present) added to the word and delivers the root word (RW). For

example if the input to the analyzer is கணிᾺெபாறியி᾿ the output is given as கணிᾺெபாறி.

3.2 Identification of the type

The proposed paper handles three categories of words; common Tamil words, Abbreviations

/acronyms, numbers. Now, the category to which the RW belongs is to be identified. The RW is

checked to decide the category of abbreviations /acronyms. This is done by comparing the root word

with the keys of the hash map (2.3). If the comparison results are true then the RW is considered as the

abnormal word (AW) i.e. it belongs to the category of acronyms/abbreviations, else, it is treated as the

normal word (NW) i.e. it belongs to either the first or third category.

269

3.3 Extraction of the compact word

If the word is identified as a normal word, it is passed to a tree which is built dynamically from the set

of words that has already been stored in the dictionary. The NW is then searched in the binary search

tree. On finding the NW in the binary search tree, the compact word is retrieved with an efficient

mapping algorithm that maps each of the normal word with its compact word.

Say suppose the word is an abnormal word, its compact word is retrieved in the following manner. A

linked hash map is built for all the abbreviated words. The hash map uses the first word the

abbreviated word as its key. Again with the help of an efficient mapping algorithm, the compact word

is retrieved. In case the NW is a number name it is replaced with the numerals based on the place

value system.

3.4 Output Processing

The compact word that is being extracted is passed on the Tamil tool Morphological Generator to add

the suitable suffix to cater to the rules of the language.

4. Results and Analysis:

The paper proposes the following layout for displaying the results to the user. It has two text areas:

the one on the left is for entering the input text and the other on the right for displaying the output.

The user can also view the no of characters that have been reduced in the output text.

Efficiency of the system can be calculated as (no of characters in the input text / no of characters in the

output text) X 100%. The proposed work is tested with over 10,000 words and it is found that the final

result is reduced to 40% of the original text.

270

5. Conclusion and Future work:

The paper describes the Tamil Compaction System, a framework for shrinking the text such that its

meaning remains the same. Different subsystems and components of the framework are described in

detail. Results from the implementation of this Tamil compaction system framework is provided and

is compared against the compacting third party applications of social networking sites that are

implemented for English language. Improving the mapping for words which are frequently used,

conceptual reducing, integrating numerical analyser will take this system to its next level.

References:

� Anandan, R. Parthasarathi, and T.V. Geetha, Morphological Analyser for Tamil. ICON 2002,

2002.

� Fung, L. M. (2005). SMS short form identification and codec. Unpublished master’s thesis,

National University of Singapore, Singapore

� Acrophile (LSLarkey, P Ogilvie, MA Price, B Tamilio, 2000) a system that automatically

searches acronym expansion pairs.

� Short Message Service (SMS) Texting Symbols: A Functional Analysis of 10,000 Cellular Phone Text

Messages by Robert E. Beasley, Franklin College.

271

Tamil Summary Generation for a Cricket Match

J. Jai Hari Raju, P. Indhu Reka, K.K Nandavi, Dr. Madhan Karky

Tamil Computing Lab (TaCoLa),
College of Engineering Guindy, Anna University, Chennai.

jaihari1989@gmail.com, p.indhu@gmail.com, ashwathas@gmail.com, madhankarky@gmail.com

Abstract

Cricket is one of the most followed sports in the Indian subcontinent. There is a wide requirement for

natural language descriptions, which summarize a cricket match effectively. The process of generating

match summaries from statistical data is a manual process. The objective of this paper is to propose a

framework for automatic analysis and summary generation for a cricket match in Tamil, with the

scorecard of the match as the input. Data analytics is performed on the statistical match data, to mine

all frequently occurring patterns. The paper proposes a parameter called Interestingness, which

quantifies the interestingness of the match. The paper also proposes a customization model for the

summary. We propose an evaluation parameter called humanness, which quantifies the similarity

between the output and a manually written summary. Discussing the results and analyzing the

summaries generated for matches based on scorecards, this paper concludes with proposing some

extensions for future developments.

1. Introduction

The number of websites which facilitate people to follow and analyze sports has increased manyfold.

Among them, there are an exceptionally large number of sites devoted to Cricket. Mostly these

involve participation of experts, who present their views and summaries in English about cricket

matches. There are no such sites which provide similar services in Tamil. In this case it is also

desirable if there is an alternative for human creativity. As a solution the paper proposes an

automated Tamil summary generation framework which is capable of analyzing and generating a

Tamil summary about a cricket match, provided the score card as the input. This paper discusses the

overall architecture and implementation details of such a framework.

The large amount of data in this domain makes it possible to apply data mining and data analytics

techniques. The input scorecard is analyzed to construct feature vectors, which are then subjected to

data mining. Based on the various parameters identified, the interestingness of the match is

quantified.

The summary generation part involves extraction of key players and events from a match.

Appropriate sentences are then synthesized to express these selected events. The sentence constructs

and the vocabulary used are chosen based on the linguistic ability specified by the user. Then the

sentences are combined in to a meaningful summary.

The results of the system, i.e. the summaries, are evaluated based on the Humanness parameter. This

parameter gives the degree of similarity between the generated summary and the manually written

summary, with which it is compared. This value helps us decide, the level of creativity achieved by

272

the system. In section 2 we provide an overview of the literature survey conducted. In section 3 we

discuss the design of the various modules of the framework. In section 4 we discuss the

implementation of the proposed framework and the results obtained from the analysis. Finally we

conclude in section 5 with extensions to the current framework and directions for further studies in

the field of Tamil Summary Generation Systems.

2. Background

In the literature there are existing works on summary generation from statistical data. Alice Oh et al.

generated multiple stories about a single baseball game based on different perspectives using a

reordering algorithm [1]. Ehud Reiter et al. in their book building natural language generation systems

explain the difference between natural language generation and natural language processing and also

describe the various steps involved in the natural language generation process with examples

[2].Jacques Robin et al. presented a system (called STREAK) for summarizing data in natural

language. It focuses on basketball game to design and evaluate the system [3]. L. Bourbeau et al. came

up with the FoG (Forecast Generator) using the streamlined version of the Meaning-Text linguistic

model. This system was capable of generating weather forecasts in both English and French [4].

3. Summary Generation Framework

The Tamil Cricket Summary Generator consists of the following major components:

• Data Gathering and Modeling module

• Data Mining and Data Analytics module

• Summary Generator

• Evaluator

Figure (1) given below depicts the Summary Generation framework.

 Figure 1: Tamil Cricket Summary Generator Framework

273

3.1 Data Gathering and Modeling Module

Data gathering is the first step of the system. The data to be gathered is present in internet. This

module has a custom designed parser, for the tag structure of the site. The user must provide the URL

from where the particular match’s data can be obtained. The module checks whether the match has

already been processed. If not the parser parses the page and retrieves the statistical data. The

statistical data is then modeled in the form of the predefined feature vectors.

3.2 Data Mining and Analytics Module

Modified version of Apriori algorithm is used to find the association rules from the feature vectors.

After performing mathematical analysis using correlation of variance (CoV), CoV is plotted against

average to give an idea about how consistent the player is. The interestingness of the match is

calculated based on the weighted average of the scores assigned to the factors identified, they include

the Winning margin, Team history, Individual records made, High run rate, Series state, Relative

position in international ranking, Reaction in social networks etc.

3.3 Summary Generator

The summary generator part of the framework consists of the following sub modules Content

Determiner, Aggregator, Tamil Morphological Generator and Layout Determiner. The events to be

included in the summary are not predefined and are not the same for every match. Based on the

interestingness of the total match, the interestingness of the individual events and the expert level

chosen by the user, particular events are chosen to be included in the summary. The content

determiner is responsible for identifying those facts which are worth mentioning in the summary.

Aggregation of relevant events from other matches in the summary will make it more readable and

interesting. The aggregator performs this function. It chooses events based on their similarity and

coherence and aggregates them with the key events selected in the content determiner module.

As a next step, the sentences used to describe the events are synthesized. The sentence which is the

most apt to the current event under consideration is selected. The vocabulary used in the sentence and

the depth to which an event is discussed is also varied based on the expert level of the user. The nouns

in the key events are passed to the morphological generator along with the desired case endings and

the generated variants are added to the sentences.

The layout determiner module chooses the layout of the summary to be generated. The layout is

varied based on the interestingness of the match. The sentences are aggregated in the fashion of the

layout selected and the final output summary is passed to Evaluator.

3.4 Evaluator

The summary generated by the system is evaluated based on its degree of similarity with human

written summaries. The summaries are compared based on two parameters, the Nouns Mentioned

and the Events Mentioned.

The nouns and the events in the summaries are extracted along with their absolute positions. The

events in the summary are modeled as a set consisting of, one or more Performers (the persons who

takes part in the event), Numeral (the numeric part involved in the event e.g. 4 wickets) and a

274

Descriptor (the action connecting the Performer and the Numeral). Their absolute positions refer to

the sentence number in which they are mentioned. Then these absolute positions are normalized

based on the total number of sentences present in the summary. Three different scores are calculated

they are,

◦ Similarity Score: The ratio of the number of nouns and events mentioned in both the summaries

to the total number of nouns and events mentioned at least in one summary.

◦ Count Score: The ratio of the number of nouns and events mentioned in the system generated

summary to the number of nouns and events mentioned in the human written summary

◦ Closeness Score: The degree of closeness, in terms of the normalized positions of the nouns and

events mentioned in both the summaries.

A weighted average of these three scores yields the final humanness score.

4. Implementation

To implement the proposed framework, espncricinfo a reliable and prominent site for Cricket data is

chosen as the source of input. The frame work was implemented in java. The URL of the match for

which the summary is to be generated is obtained from the user. The feature vectors designed for

modeling a match are stored as rows with unique identities, in the back end oracle database. The

patterns which are generated as a result of data mining are validated based on the support and

confidence parameters. As a design decision all nouns are stored in English and are translated on the

fly using a constantly updated look up database. This decision was taken to allow interoperability and

easy extension of the system to other languages in future. The sentence pattern files are stored

external to the system, so as to allow modifications without changes in the system. The summary

generated for the match is stored in the back end, indexed with the unique identity assigned already.

The user interface is designed to be simple and robust. It allows the users to search matches based on

various parameters and also to save their preferences.

4.1 Results

Score cards of 90 One Day International matches where retrieved and their summaries were

generated. These include matches between 9 countries. Both individual matches and series were

considered. A large number of hidden patterns in cricket domain have been retrieved based on the

algorithm used. The patterns have been validated and the ones which are interesting have been

reported. The factors contributing to the interestingness of the match have been identified and the

weights associated with them have been found. The consistency of a player has been modelled and

consistency analysis of a player is done to analyse his performance.

The difference in the language used and the events mentioned in the summary is pronounced when

the user opts for an expert level. Similar facts occurring in the past have been identified and added to

the summary. Each summary was compared with two human written summaries, one an expert

summary and other an average summary, their cumulative scores were considered. The humanness

score of the summaries tend to be in the range of 70% to 85%. The recurrence of layouts is also

minimal, which reflects the fact that the summaries generated are not monotonous.

275

5. Conclusion and future work

In this paper we have proposed the framework for an Automated Tamil Cricket Summary Generator.

The current implementation of the system can be enhanced by adding machine learning capabilities to

make the summaries more human and interesting. The system can be extended to produce summaries

in multiple languages apart from Tamil. The system can be enhanced to generate summaries about

the match in real time. As a next level the system can be modified for summary generation in other

sports too.

Figure 2: Screenshot of the Tamil Cricket Summary Generation System

The frame work can be used as a guideline to develop summary generation systems, which can be

applied for any domain where frequent numerical reports are used. (Weather Prediction, Industrial

Quality Testing etc)

References

� Alice Oh and Howard Shrobe, “Generating baseball summaries from multiple perspectives by

reordering content,” in Proc. 5th International Natural Language Generation Conference,

2008, pp. 173-176.

� Ehud Reiter and Robert Dale, “Building natural language generation systems,” Cambridge:

Cambridge University Press, 2000.

� Jacques Robin and Kathleen McKeown, “Empirically Designing and Evaluating a New

Revision-Based Model for Summary Generation,” Department of Computer Science,

Columbia University, 1996, vol. 85, pp.135-179.

� L. Bourbeau, D. Carcagno, E. Goldberg, R. Kittredge and A. Polguere. “Bilingual generation of

weather forecasts in an operations environment,” In Proc. 13th International Conference on

Computational Linguistics, Helsinki University, Finland, 1990. COLING

276

Lyric Mining: Word, Rhyme & Concept

Co-occurrence Analysis

Karthika Ranganathan, T.V Geetha, Ranjani Parthasarathi & Madhan Karky

Tamil Computing Lab (TaCoLa),

College of Engineering Guindy, Anna University, Chennai.

karthika.cyr@gmail.com, madhankarky@gmail.com

ABSTRACT

Computational creativity is one area of NLP which requires extensive analysis of large datasets.

Laalalaa [1] framework for Lyric analysis and generation proposed a lyric analysis subsystem that

required statistical analysis of Tamil lyrics. In this paper, we propose a data analysis model for words,

rhymes and their usage in Tamil lyrics. The proposed analysis model extracts the root words from

lyrics using a morphological analyzer [2] to compute the word frequency across the lyric dataset. The

words in their unanalyzed form are used for computing the frequent rhyme, alliteration and end-

rhyme pairs using adapted apriori algorithm. Frequent co-occurring concepts in lyrics are also

computed using Agaraadhi, an on-line Tamil dictionary. Presenting the results, this paper concludes

by discussing the need of such an analysis to compute freshness, pleasantness of a lyric and using

these statistics for Lyric Generation.

Keywords : Tamil Lyrics, Morphological Analyser, Apriori algorithm.

I. INTRODUCTION

Tamil is one of the world's oldest languages and has a Classical status. Numerous forms of literature

exist in Tamil language of which, lyrics play a vital role in taking the language to every house hold in

form of original film soundtracks, jingles, private albums, and commercials. With over thousands of

lyrics being created every year, we do not have proper tools to model and analyse lyrics. Such an

analysis framework would enable one to see various patterns of words, combinations and thoughts

used over time. The analysis framework will also make it possible to generate fresh lyrics where the

freshness can be associated with the concepts and thoughts associated with the lyric.

In this paper, we discuss about Tamil lyric Analysis on the basis of word usage, rhyme usage and the

co-occurrence of word. The frequency of word usage is identified by considering a morphological root

of the word using morphological analyser, instead of considering terms. For analysing the frequent

rhyme, alliteration and end-rhyme pairs, we adapted Apriori algorithm [4]. To identify the co-

occurring concepts in lyrics, we used “Agaraadhi”, an on-line Tamil dictionary Framework [3] and a

new algorithm has been proposed to compute the frequent usage of co-occurring concepts in lyrics.

The rest of this paper has been organized as follows. In Section 2, we explain about the algorithm and

tools. In Section 3, we explain the methodology and in Section 4, we discuss our results. Conclusions

and future extensions to this work are presented in section 5.

277

2. MORPHOLOGICAL ANALYSIS AND APRIORI ALGORITHM

Morphological analysis is the process of segmenting words into morphemes and identifying its

grammatical categories. For a given word, morphological analyser (MA) generates its root word and

its grammatical information. The role of morphological analyser in the proposed work is to identify

the noun and verb morphology of a given word, examples are as follows

Example 1, for noun morphology:

இராமைன (Ramanai)

 இராம� (Raman) + ஐ (ai)

 Entity + Accusative Case

 Example 2, for verb morphology:

ெச�றா� (Senraan)

ெச, (sel) + � (R) + ஆ� (Aan)

Verb + Past Tense Marker + Third Person Masculine Singular Suffix

In the proposed work, the frequency of a word is identified by considering the variations of a noun in

terms of its morphology. For instance, the variations of Ramanai such as Ramanaal, Ramanukku,

Ramanin, Ramanadhu are also counted for the word Raman.

The Apriori Algorithm is an influential algorithm for mining frequent item sets for Boolean

association rules [4]. Apriori uses a "bottom up" approach, where frequent subsets are extended one

item at a time (a step known as candidate generation), and groups of candidates are tested against the

data. The algorithm terminates when no further successful extensions are found. It has objective

measures: support and confidence. The support of an association pattern is the percentage of task-

relevant data transactions for the apparent pattern. Confidence can be defined as the measure of

certainty or trustworthiness associated with each discovered pattern.

3. LYRIC ANALYSIS

(i) Word Analysis

The frequency of words is used to associate a popularity score for each word. This score is proposed to

be used for lyric generation part of the frame work proposed in [1]. In this work, the popularity score

of a word has been identified from lyrics. In lyrics, the words are mainly attached with the suffix. So,

the root words are taken into consideration for determining its frequency count. The root words are

identified using morphological analyser. The algorithm to find the word usage is illustrated below:

Algorithm

Let LD is the set of lyric dataset and LS denotes the set of sentences of lyric dataset and LW denotes the

set of words in the lyric dataset. WC denotes the word count across all lyric dataset. Let m be the total

number of sentences in lyrics and n be the total number of words in lyrics.

278

a) Given a Lyric dataset LD

b) For each LSi ← 1 to m

 Split the sentence LS into words LW

c) For each LWj ← 1 to n

 RW ← ProcessMorphAnalyser(LWj)

d) Let RW be the root word

 if RW exist, then add into the word count list (WC)

 else add into the word count list (WC)

e)ReturnWC.

Here ProcessMorphAnalyser(LWj) returns the root of the given word.

(ii) Rhyme Analysis

Alliteration (Monai) is the repetition of the same letter at the beginning of words. The rhyme

(Edhugai) is defined as the repetition of the same letter at the second position of words. The end

rhyme (iyaibu) is defined as the repetition of the same letter at the last position of words. The example

of alliteration, rhyme and end rhyme is given below:

Examples:

உயி
 and உ� rhyme in alliteration (monai) as they start with the same letter.

இதய(and காத� rhyme in rhyme (edhugai) as they share the same second letter.

யா!ைக and வா=!ைக rhyme in end – rhyme (iyaibu) as they share the same last letter.

We have adapted apriori algorithm to find the frequency count of rhyme, alliteration and end rhyme

pairs of Tamil lyrics which has been illustrated below:

Algorithm:

Let LD be the set of lyric dataset and LS denote the set of sentences of Lyric dataset. Let m be the total

number of sentences in lyrics. Let PC1 denote the count of alliteration and PC2 denote the count of

rhyme and PC3 denote the count of end – rhyme.

a) Given lyric dataset LD .

b) For each LS ← 1 to m

 Join the pair of sentences (LP)

c) For each LP

 Consider the first (LP1) and last words (LP2)

d) Rhyme (LP1, LP2)

e) return PC

279

Algorithm : Rhyme (LP1, LP2)

a) Let k denote the ith character. Let ML denote the alliteration (monai) list and RL denote the rhyme

(edhugai) list and EL denote the end – rhyme (iyaibu) list.

b) For ∀ i,

 if k = 1, if LP1(k) = LP2(k), then add into ML list and increment PC1

 if k = 2, if LP1(k) = LP2(k), then add into RL list and increment PC2

 if k = i - 1, if LP1(k) = LP2(k), then add into EL list and increment PC3

(iii) Co-occurrence concept Analysis

Co-occurrence is defining the frequent occurrence of two terms from a text corpus on the either side in

a certain order. This word information in NLP system is extremely high. It is very important for

cancelling the ambiguous and the polysemy of words to improve the accuracy of the entire system [5].

In this method, to improve the efficiency of co-occurrence, we have been considering the concept of

each word. The concept for each word has been identified using the Agaraadhi, an on-line Tamil

dictionary. The example for concept word which has been in lyric is given below:

Example: The word "நிலF ” which has the concept ெவGணிலா, மதி, மாத�,

:ைண�ேகா*, ெவGணிலF, அ��லி, அ��லிமா�.

By considering these concepts, we have been determining the co-occurring words using our own

algorithm is described below:

Algorithm :

Let LD denote the set of Lyric dataset and W denote each word in lyric. Let CW denote the set of

concepts for each word. Let WC denote the word count.

a) If the word CW identify, then consider the next word.

 Increment the count WC

b) Else the word W and consider the next word.

 Increment the count WC

c) return WC

4. RESULTS

The lyric corpus of more than two thousand songs were analysed for the word usage, rhyme usage

and Co-occurence concepts usage. The analysed results are given below:

280

Table 1 shows the list of top 10 usage words in lyrics.

Table 2 shows the list of top 10 rhyme words in lyrics.

EDHUGAI USAGE MONAI USAGE IYAIBU USAGE

எ�,உ� 107975 எ�,எ�ைன 33492 எ�,உ� 111552

நா�,எ� 80125 உ�ைன,உ� 26289 நா�,எ� 83435

நா�,உ� 61204 எ"த�,எ� 16478 நா�,உ� 63543

எ�,உ�ைன 33731 எ�,எ�ன 15405 எ�,உ"த� 18411

எ�,எ�ைன 32570 உ"த�,உ� 14001 எ"த�,எ� 16478

உ�ைன,உ� 25747 உயி�,உ� 11640 உ"த�,உ� 14001

எ�ைன,உ� 24867 இ"த,இ: 10993 எ"த�,உ� 12524

நா�,உ�ைன 19297 என:,எ� 9985 நா�,உ"த� 10524

நா�,எ�ைன 18935 எ"த,எ� 9976 எ"த�,நா� 9367

எ�,எ�ன 14486 நI,நI9� 9962 இ"த,அ"த 4818

Table 3 shows the list of top 10 co-occurring concept words in lyrics.

CO-OCCURING WORDS USAGE

அ�ேப,அ�ேப 638

சி�ன,சி�ன 530

வா,வா 506

எ�,காத, 478

ஒேர,ஒ0 469

நI9�,நாJ� 434

உ�ைன,நா� 419

தமிK,எLக* 367
ஒ0,நா* 302

நI,எ�ைன 287

WORDS USAGE WORDS USAGE

நI 2009 வா 1062

எ� 1941 ஒ0 987

நா� 1645 கG 965

உ� 1556 M 857

காத, 1153 இ,ைல 793

281

By analysing those data, this shows that the most of lyrics which predicts the emotion of happiness

and love. In the adapted apriori algorithm, the support which represents the total number of pair

words with the total number of combination of sentences and the confidence which described the total

number of pair words with the total number of pair of sentences. The results may vary if the number

of lyrics used for the analysis is increased.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the usage of words and rhymes in the lyrics dataset. The adapted apriori

algorithm has been used to detect the frequency count for rhyme, alliteration and end word pairs. This

analysis has been mainly used in the lyric generation and computing freshness scoring for lyrics.

Frequent co-occurring concept is also been identified for the development of lyric extraction, semantic

relationship, word sense identification and sentence similarity. Possible extensions of this work could

be the detection of emotions in lyrics by genre classification and identify genre specific rhymes and

concept co-occurrence.

REFERENCES

� Sowmiya Dharmalingam, Madhan Karky, “LaaLaLaa – A Tamil Lyric Analysis and

Generation Framework” in World Classical Tamil Conference – June 2010, Coimbatore.

� Anandan P, Ranjani Parthasarathy, Geetha, T.V. “Morphological analyzer for Tamil”. ICON

2002.

� Agaraadhi Online Tamil Dictionary. http://www.agaraadhi.com, Last accessed date 25h April

2011.

� HAN Feng, ZHANG Shu-mao, DU Ying-shuang, “The analysis and improvement of Apriori

algorithm”, Journal of Communication and Computer, ISSN1548-7709, USA, Sep. 2008,

Volume 5, No.9 (Serial No.46).

� EI-Sayed Atlam, Elmarhomy Ghada, Masao Fuketa, Kazuhiro Morita and Jun-ichi Aoe, “New

Hierarchy Technique Using Co-Occurrence Word Information”, International Journal of

Information Processing and Management, Volume 40 Issue 6, November 2004.

282

Template based Multilingual Summary Generation

Subalalitha C.N, E.Umamaheswari, T V Geetha,

Ranjani Parthasarathi & Madhan Karky

subalalitha@gmail.com

Tamil Computing Lab (TaCoLa)

College of Engineering Guindy Anna University, Chennai.

Abstract

Summarization of large text documents becomes an essential task in many Natural Language

processing (NLP) applications. Certain NLP applications deal with domain specific text documents

and demand for a domain specific summary. When the essential facts are extracted specific to the

domain, the summary proves to be more efficient. The proposed system builds a bilingual summary

for an Information Retrieval (IR) system named CoRee, which tackles Tamil Language and English

Language text documents [1]. As the input documents are tourism domain specific documents, the

summary is extracted based on specially designed seven tourism specific templates 7 both for Tamil

and English. The templates are filled in with the required information extracted from the UNL

representation and a bilingual summary is generated for each text document irrespective of the

language of input text document. The efficiency of the summary has been tested manually and it has

achieved 90% efficiency. This efficiency depends on factors other than summary generation such as

enconversion accuracy and dictionary entry coverage. The proposed system can be extended for many

languages in future.

1. Introduction

Automatic summary generation has been a research problem for over 40 years [2]. Summarizing the

texts helps in avoiding information overload and also saves time. Multi lingual Natural Language

applications have emerged in great number in recent years. This makes the need for a multi lingual

summary generation a quintessential task. Alkesh patel et al have come up with a multi lingual

summary generation by using structural and statistical factors [2]. David Kirk Evans has generated

multi lingual summary using text similarities existing in the sentences [3]. Dragomir Radev et al have

developed a multi lingual summary generation tool named MEAD using centroid and query based

methods. They have also used many learning techniques such as decision trees, Support Vector

Machines (SVM) and Maximum Entropy [4].

All the above works on multi lingual summarization have not used a interlingua document

representation . We propose that a multi lingual summary can be generated with much more ease by

using a interlingua document representation language called, “Universal Networking Language”

(UNL) [5]. UNL converts every term present in a natural language text document into a language

independent concept, thereby making the applications built using it a language independent one. The

proposed work extracts a domain specific summary, as the UNL documents used are tourism domain

specific. Tourism specific templates are framed and the sentences fitting the templates are chosen and

formed as a summary.

283

The rest of the paper is organized as follows. Section 2 gives a brief introduction about UNL. Section 3

describes the proposed summarization technique. Section 4 discusses the evaluation of the proposed

work. Section 5 reveals the enhancements needed to the proposed work and Section 6 gives the

conclusion of the paper.

2. Universal Networking Language

UNL is an intermediate language that processes knowledge across language barriers. UNL captures

the semantics of the natural language text by converting the terms present in the document to

concepts. These concepts are connected to the other concept through UNL relations . There are 46

UNL relations like plf(Place From), plt(Place To), tmf(Time from), tmt(Time to) etc [1]. This process of

converting a natural language text to UNL document is known as Enconversion and the reverse

process is known as Deconversion. The UNL document is normally represented as a graph where the

nodes are concepts and edges are UNL relations. An example UNL graph is shown for the example 1.

Example 1: John was playing in the garden .

Figure 1: UNL graph for Example 1

The nodes of graph namely, “John(iof>person)”, “Play(icl>action)” and garden(icl>place) represent

the terms John, playing and garden present in the example 1. The semantic constraints in the concepts,

“iof>person”, “icl>action” and “icl>place” denotes the context in which the concepts occur. The edges

namely, “agt” and “plc” indicates that, the concepts involved are agents and place. From the above

discussion, it is shown that the UNL inherits many semantic information from the natural language

text and portrays in a language independent fashion.

The proposed work uses Tamil language text documents and English language documents

enconverted to UNL for summary extraction which is described in the next section.

3. Template based Information Extraction

As discussed earlier, the summary is generated using the tourism specific templates. Figure 2 shows

the over view of the proposed summary generation framework. The Framework consists of both

language dependent and independent parts. The functionalities involving UNL are language

independent and the inputs supplied to the framework to generate bi lingual summary are the

language dependent parts. The bilingual summary generation is explained in the coming sections.

john(iof>person)

garden(icl>place)

play(icl>action)

plc

agt

284

The seven templates describe about the tourism specific information of a place such as,god, food,

flaura and fauna, boarding facility, transport facility, place and distance. The correct information for

these templates are extracted as discussed below. The usage of semantics helps greatly in eliminating

the ambiguities that may arise while picking up a concept to fill the slot. For instance, the word, “bat”

may denote a cricket bat or the mammal bat.

Figure 2: Overview of the Summary Generation Framework

This type of ambiguity is resolved by the semantic constraint, as the cricket bat will get the semantic

constraint, “obj<thing (object thing)”, whereas the mammal gets the semantic constraint,

“icl>mammal”. Table 1 displays few semantics used for the respective templates.

The extracted tourism specific concepts are converted to the target language terms for building a

summary using the sentence patterns which is explained in the next section.

4 Multi Lingual Summary generation

The information (concepts) extracted from the UNL graph using the templates are converted to the

target language term using the respective UNL dictionary. For instance, to generate the English

summary, the concepts comprising the semantic constraints are converted to English terms using the

English UNL dictionary which consists of mapping between English terms and UNL concepts. These

terms which when filled into the appropriate English sentence patterns, gives a English summary .

The same procedure is done for building a Tamil summary. For each UNL graph irrespective of its

source language, a summary in Tamil and English are generated.

285

Template Semantics

God iof>god, iof>goddess, icl>god

Food icl>food, icl>fruit

Flaura and Fauna icl>animal, icl>reptile, icl>mammal, icl> plant

Boarding facility icl>facility

Transport facility icl>transport

Place icl>place, iof>place, iof>city, iof>country

Distance icl>unit , icl>number

Table 1 :Semantics used for each templates

The terms obtained from the UNL dictionary will be a root word. For instance, the term, “eating” will

be entered as eat (icl >action) in the UNL dictionary. So the terms obtained from the UNL dictionary

needs to be generated to its original form using Morphological generator. The summary generation

requires only tourism specific concepts, so the generation is almost not required . But we have used a

morphological generator for Tamil, as the place information and distance information in Tamil with

the case suffixes இ᾿ (il), இᾢᾞᾸᾐ(ilirunthu), உᾰᾁ (ukku) etc needs to be generated. For the

example UNL graph shown in figure 3, the generated transport template in Tamil which is part of

the summary is given in example 2.

Figure 3:UNL graph given as input for example 2

Example 2: ெசᾹைனᾰᾁ ேபᾞᾸதி᾿ ெச᾿லலாΆ

The concept chennai(iof>city) in the above graph, is generated as "ெசᾹைனᾰᾁ" by adding the case

suffix “உᾰᾁ ” and the concept bus(icl>vehicle) is generated as

 "ேபᾞᾸதி᾿" by adding the case suffix, “இ᾿”.

Chennai(iof>city)

bus(icl>vehicle)

reach(icl>action)
ins

plc

286

5. Performance Evaluation

 The proposed work has been tested with 33,000 Tamil and English text documents enconverted to

UNL graphs. The performance of the methodology proposed has been evaluated using human

judgement. The accuracy of the summary generated has achieved 90% . Apart from the summary

generation factors such as tourism specific concept extraction , the accuracy also depends on the

quality of enconversion and dictionary entry. By improving these factors, the accuracy can further

be improved.

6. Conclusion and Future work

The proposed work generates a tourism specific bilingual summary using the intermediate document

representation, UNL and tourism specific templates. The bilingual summary is generated in a simple

and efficient manner compared to the earlier work done for multi lingual summary generation. The

only over head involved is developing a enconverter framework.

 As future enhancements, sentence patterns can be replaced by selecting the sentences having high

sentence score based on its sentence position and the frequency of concepts. Query specific summary

can also be generated on line, as the summary discussed here is a tourism specific generated off line

using the templates. The evaluation of the generated summary can also be done by comparing it with

the human generated summary. By doing this, many factors to make the machine generated summary

compatible with human generated summary may evolve.

Reference

� Elanchezhiyan K, T V Geetha, Ranjani Parthasarathi & Madhan Karky, CoRe – Concept Based

Query Expansion, Tamil Internet Conference, Coimbatore, 2010.

� Alkesh Patel , Tanveer Siddiqui , U. S. Tiwary , “A language independent approach to multilingual

text summarization”, Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007

� David Kirk Evans, “Identifying Similarity in Text: Multi-Lingual Analysis for

Summarization ”, Doctor of Philosophy thesis, Graduate School of Arts and Sciences ,

Columbia University, 2005

� Radev, Allison, Blair-Goldensohn et al (2004), MEAD – a platform for multidocument

multilingual text summarization

� The Universal Networking Language (UNL) Specifications Version 3 Edition 3, UNL Center

UNDL Foundation December 2004.

� Jagadeesh J, Prasad Pingali, Vasudeva Varma, “ Sentence Extraction Based Single Document

Summarization” Workshop on Document Summarization, March, 2005, IIIT Allahabad.

� Naresh Kumar Nagwani, Dr. Shrish Verma , “A Frequent Term and Semantic Similarity based

Single Document Text Summarization Algorithm ” International Journal of Computer

Applications (0975 – 8887) Volume 17– No.2, March 2011 .

� Prof. R. Nedunchelian, “Centroid Based Summarization of Multiple Documents Implemented using

Timestamps ” First International Conference on Emerging Trends in Engineering and

Technology, IEEE 2008

287

Special Indices for LaaLaLaa Lyric Analysis
&

Generation Framework

Suriyah M, Madhan Karky, T V Geetha, & Ranjani Parthasarathi
{suriyah.cse@gmail.com, madhankarky@gmail.com,

tv_g@hotmail.com, rp@annauniv.edux}

Tamil Computing Lab (TaCoLa),

College of Engineering Guindy, Anna University, Chennai.

Abstract

With the advent of computational tools for creativity, it becomes inevitable to design data structures

which cater to the specific needs of the creative form considered. A lyric generator has to retrieve

words fast based on Part of Speech and rhyme. This paper aims at building special indices for the

LaaLaLaa Lyric Generator framework based on POS and rhyme to facilitate faster retrieval. The

retrieval times of the proposed model and the conservative word indexed model are compared. The

indexing is based on the KNM(Kuril, Nedil, Mei) pattern and the letters that occur in the rhyming

spots of the words. The data structure is organized as hash tables to ensure best retrieval complexity.

Separate hash tables for each POS and rhyming scheme are created and populated. Here, the key

would be the meter pattern with the letters occurring at the rhyming spots and the value would be the

list of all those words which fall under the key’s constraint. When the word indexed and meter rhyme

indexed retrievals were compared, the latter reduced the average retrieval time drastically. There

were not steep variations in the retrieval times as was in the former approach. This remarkable

efficiency was traded-off with space.

1. Introduction

Tamil, one of the oldest languages, has a very rich literary history dating back to two thousand years.

We have more than two thousand lyrics being written in this language in the form of film songs,

advertisements, jingles, private albums etc. With the advent of computational tools for creativity, it

becomes inevitable to design data structures which cater to the specific needs of the creative form

considered. Tools for poem generation, story generation and lyric generation have been proposed.

A poem has to have three qualities – meaningfulness, poeticness and grammaticality [1]. A lyric is a

poem which has constraints of having to satisfy a tune and a theme. This paper talks about building

special indices for the LaaLaLaa lyric generator framework[2] to aid faster retrieval of words based on

POS and rhyme.

A lyric generator would require the retrieval of words of a particular meter and particular letters at

rhyming spots. This would maximize the poeticness of the lyric generated with the increase in

rhymes. This retrieval process, when carried out on an un-indexed word database, is too expensive

as it would take separate processing for meter, and each of the three rhymes in Tamil. To facilitate

faster retrieval of words satisfying these constraints, the word database has to be indexed based on

288

meter-pattern and rhyme. This makes indexing of the word database based on the abovesaid

constraints necessary.

This paper is organized as eight sections. The second section discusses about a few existing works in

this area. The third section gives an overview of the Rhyme schemes in Tamil. An overall view of the

system is given by the fourth section while the fifth section talks about the approach proposed for

indexing. This work concludes with the results obtained and scope for future work in this area.

2. Background

Though significant number of works has been done in the arena of poetry generation in other

languages, there is only less number in Tamil.

The “Automatic Generation of Tamil Lyrics for Melodies” [3] identifies the required syllable pattern

for the lyric and passes this to a sentence generation module which generates meaningful phrases that

match the pattern. This system generates rhyme based on maximum substring match and fails to

make use of the three rhyming schemes that are specific to Tamil language. “LaaLaLaa - A Tamil Lyric

Analysis and Generation Framework” [2] generates Tamil lyrics for POS tagged pattern with words

from a rhyme finder according to rhyming schemes in Tamil. Nichols et al[5] investigate the

assumption that songwriters tend to align low-level features of a song’s text with musical features. K.

Narayana Murthy[4] suggests having a non-dense TRIE index in main memory and a dense index file

stored in secondary memory.

Anna Babarczy et al[6] suggested a hypothesis that a metaphoric sentence should include both source-

domain and target-domain expressions. This assumption was tested relying on three different

methods of selecting target-domain and source-domain expressions: a psycholinguistic word

association method, a dictionary method and a corpus-based method. Hu, Downie and Ehmann[7]

examine the role lyric text can play in improving audio music mood classification. Mahedero et al[8]

argue that a textual analysis of a song can generate ground truth data that can be used to validate

results from purely acoustic methods. Mayer et al[9] present a novel set of features developed for

textual analysis of song lyrics, and combine them with and compare them to classical bag-of-words

indexing approaches and results for musical genre classification on a test collection in order to

demonstrate our analysis. “Semantic analysis of song lyrics” studies the use of song lyrics for

automatic indexing of music. Netzer et al explore the usage of Word Association Norms (WANs) as

an alternative lexical knowledge source to analyze linguistic computational creativity. Logan et al. use

song lyrics for tracks by 399 artists to determine artist similarity[12].

3. Rhyme Schemes and Rhyme Patterns

Rhyme Schemes: English has number of rhyme effects like assonance, consonance, perfect, imperfect,

masculine, feminine etc. This arises from the variation in stress patterns of words, lack of clear cut

description about the spots where rhymes can occur.

In Tamil, the grapheme and phoneme are bound stronger than in English. There are 3 characteristic

rhyme schemes in Tamil – Monai (ேமாைன), Edhugai (எᾐைக) and Iyaibu (இையᾗ).

Two words are said to rhyme in monai if their first letters are the same, in edhugai if their second

letters are the same and in iyaibu if their last letters are the same.

289

Examples: பறைவ and பᾲைச rhyme in monai as they start with the same letter.

அ0வி and வி0	� rhyme in edhugai as they share the same second letter.

யா�ைக and வாK�ைக rhyme in iyaibu as they share the same last letter.

As one may infer, two words can rhyme in more than one pattern also.

Examples: அ0வி and �0வி rhyme in edhugai and iyaibu.

கவிைதக* and கவிஞ�க* rhyme in all the three schemes.

Meter Pattern: One way of classifying alphabets of the Tamil language is based on the time interval

(மா�திைர - maathirai) for which they are pronounced. One maathirai corresponds to the time taken

to wink the eyelid. The types of letters in this classification are

Nedil (N) (ெநN,) - Those alphabets which are pronounced for the time interval of 2 maathirai.

Kuril (K) (�றி,) - Alphabets which take 1 maathirai to be pronounced.

Mei (M) (ெம)) - Alphabets which are pronounced for 0.5 maathirai.

Meter pattern of a word refers to its Kuril Nedil Mei pattern.

For example, the meter pattern of the word பாட, is NKM as பா is a Nedil(N), ட is a Kuril(K) and

, is a Mei(M).

The indexing methodology proposed needs to take care of both meter pattern and rhyme to facilitate

faster retrieval of words for the LaaLaLaa Lyric Generation and Analysis framework[2].

4. Overview of the System

Figure 1. Overview of the system.

Each word from the word database is converted to an object. Meter pattern and the alphabets at the

Rhyming positions of each word are found out by Meter Pattern Extractor and Rhyme Extractor

respectively. Using the data obtained, the Index builder builds the Rhyme Meter Index aiding faster

retrieval than the normal un-indexed retrieval.

Rhyme Meter

Index

Word object

convertor

Rhyme

extractor

Index Builder

Meter

Pattern

Extractor

Word

DB

290

5. Indexing Algorithm

Part of Speech
Letter1 Words

MeterPattern1
Letter2 Words
Letter1 Words

ேமாைன

MeterPattern2
Letter2 Words
Letter1 Words

MeterPattern1
Letter2 Words
Letter1 Words

எ:ைக

MeterPattern2
Letter2 Words
Letter1 Words

MeterPattern1
Letter2 Words
Letter1 Words

இைய�

MeterPattern2
Letter2 Words

Figure 2. Indexing Logic

This indexing has been designed to facilitate fast retrieval of words specifically for lyric generation.

For instance, the system would need a word of a particular meter pattern with a particular letter

rhyming in monai scheme.

The data structure is organized as hash tables with separate tables for each Part Of Speech and

Rhyming Scheme. For example, there is a separate table for Nouns’ monai, Nouns’ edhugai, Nouns’

iyaibu and so on. Here, the keys are the Meter Pattern and the Letter at the particular Rhyming spot.

The values are the words corresponding to the particular Meter pattern and letter.

The algorithm : The word database is scanned word by word and is indexed based on meter pattern

and rhyme. Here,

;databasewordtheinwordsofnumber←α

wi ;databasewordtheinwordith←

ofpatternmeter←β wi ;

;monaitoingcorrespondwiofkeymonaiKey ←

;edhugaitoingcorrespondwiofkeyedhugaiKey ←

 ;iyaybutoingcorrespondwioflkeyiyaybuKey ←

begin

i = 1, 2, 3 …α do

 ofrnMeterPatte←β wi;

 rfirstLettemonaiKey ← (wi) + β ;

 ←edhugaiKey secondLetter (wi) + β;

 lastLetteriyaybuKey ← (wi) + β ;

Add the word to the list of words with the respective keys in the respective Hashtables.

end;

291

For each word in the word database, meter pattern is extracted first followed by letters at the rhyming

spots namely, first, second and last positions (for monai, edhugai and iyaibu respectively). Keys for

monai, edhugai and iyaybu are found out using the abovesaid equations. The word is added to the

monai, edhugai and iyaibu hashtables with keys monaiKey, edhugaiKey and iyaybuKey respectively

if those keys don’t appear previously in the tables. Else, the word is added to the list of words with

that key.

Hash-tables are chosen for the implementation as they have the retrieval complexity of O(1).

6. Results

Indexing has brought about a drastic increase in the speed of retrieval of the words rhyming with a

given word. Using the Word Indexed approach, the time complexity was O(α) where α was the total

number of words. But after Meter Rhyme indexing, the complexity has become O(1) due to the use of

hash table which is a very efficient data structure for retrieval. Rhyming words for a sample of 500

words were retrieved using both the approaches and the above mentioned graph was obtained. The

Word indexed system tooK 875.47millisecond in an average while the Meter Indexed system tooK

1.90millisecond only.From the graph it can also be inferred that there are steep variations in the Word-

Indexed approach while the Meter-Rhyme Indexed approach does not show such steep variations and

is consistent. In terms of time efficiency, Meter-Rhyme indexed approach is evidently superior

compared to Word-Indexed approach. In terms of space, it is not so efficient as each word will occur

not once, but nine times in various Hash tables.

7. References

� Hisar Maruli Manurung: “An evolutionary algorithm approach to poetry generation”, Thesis

for Doctor of Philosophy, University of Edinburgh, 2003.

� Sowmiya Dharmalingam., Madhan KarKy. “LaaLaLaa - A Tamil Lyric Analysis and

Generation FrameworK” in World Classical Tamil Conference – June 2010, Coimbatore

Figure 3. Word Indexed Vs Meter Rhyme Indexed Approach

292

� RamaKrishnan, A., S. Kuppan, and S.L. Devi. “Automatic Generation of Tamil Lyrics for

Melodies” in NAACL HLT WorKshop on Computational Approaches to Linguistic

Creativity. 2009. Colorado.

� K. Narayana Murthy "An Indexing Technique for Efficient Retrieval from Large Dictionaries",

National Conference on Information Technology NCIT-97, 21-23 December 1997,

Bhubaneswar.

� Eric Nichols, Dan Morris, Sumit Basu, Christopher Raphael, “Relationships between lyrics

and melody in popular music”, ISMIR 2009, October 2009, Japan.

� Anna Babarczy, IldiKó Bencze, István FeKete, Eszter Simon, “The Automatic Identification of

Conceptual Metaphors in Hungarian Texts: A Corpus-Based Analysis”, Proceedings of The

seventh international conference on Language Resources and Evaluation (LREC), 2010, Malta.

� Xiao Hu, J. Stephen Downie, Andreas F. Ehmann, “Lyric Text Mining in Music Mood

Classification”, ISMIR 2009, Japan.

� Jose P. G. Mahedero, Alvaro Martınez, Pedro Cano, “Natural Language Processing of Lyrics”,

Proceedings of the 13th annual ACM internationalconference on Multimedia, New YorK, NY,

USA, 2005.

� Rudolf Mayer, Robert Neumayer, Andreas Rauber, “Rhyme and style features for musical

genre classification by lyrics”, Proceedings of the 9th International Conference on Music

Information Retrieval (ISMIR’08), Philadelphia, PA, USA, September 14-18, 2008.

� Beth Logan, Andrew KositsKy, Pedro Moreno, “Semantic analysis of Song Lyrics”, IEEE

International Conference on Multimedia and Expo (ICME), June 2004.

� Yael Netzer, David Gabay,Yoav Goldberg, Michael Elhadad, “GaiKu : Generating HaiKu

with Word Associations Norms”, Workshop on Computational Approaches to Linguistic

Creativity, CALC-2009 in conjunction with NAACL-HLT 2009, Boulder, Colorado.

� B. Logan, A. KositsKy, and P. Moreno, “Semantic Analysis of Song Lyrics”, in Proc IEEE

ICME, 2004.

293

Tamil Document Summarization Using Laten

Dirichlet Allocation

N. Shreeya Sowmya1, T. Mala2

1Department of Computer Science and Engineering, Anna University
2Department of Information Science and Technology, Anna University

Guindy, Chennai
1shreeya.mel@gmail.com 2malanehru@annauniv.edu

Abstract

This paper proposes a summarization system for summarizing multiple tamil documents. This system

utilizes a combination of statistical, semantic and heuristic methods to extract key sentences from

multiple documents thereby eliminating redundancies, and maintaining the coherency of the selected

sentences to generate the summary. In this paper, Latent Dirichlet Allocation (LDA) is used for topic

modeling, which works on the idea of breaking down the collection of documents (i.e) clusters into

topics; each cluster represented as a mixture of topics, has a probability distribution representing the

importance of the topic for that cluster. The topics in turn are represented as a mixture of words, with

a probability distribution representing the importance of the word for that topic. After redundancy

elimination and sentence ordering, summary is generated in different perspectives based on the

query.

Keywords- Latent Dirichlet Allocation, Topic modeling

I. Introduction

As more and more information is available on the web, the retrieval of too many documents,

especially news articles, becomes a big problem for users. Multi-document summarization system not

only shortens the source texts, but presents information organized around the key aspects. In multi-

document summarization system, the objective is to generate a summary from multiple documents for

a given query. In this paper, summary is generated from the multi-documents for a given query in

different perspectives. In order to generate a meaningful summary, sentences analysis, and relevance

analysis are included. Sentence analysis includes tagging of each document with keywords, named-

entity and date. Relevance analysis calculates the similarity between the query and the sentences in

the document set. In this paper, topic modeling is done for the query topics by modifying the Latent

Dirichlet Allocation and finally generating the summary in different perspectives

The rest of the paper is organized as follows. Section 2 discusses with the literature survey and the

related work in multi-document summarization. Section 3 presents the overview of system design.

Section 4 lists out the modules along with the algorithm. Section 5 shows the performance evaluation.

Section 6 is about the conclusion and future work.

294

II. Literature Survey

Summarization approaches can be broadly divided into extractive and abstractive. A commonly used

approach namely extractive approach was statistics-based sentence extraction. Statistical and

linguistic features used in sentence extraction include frequent keywords, title keywords, cue phrases,

sentence position, sentence length, and so on [3]. Cohesive links such as lexical chain, co-reference and

word co-occurrence are also used to extract internally linked sentences and thus increase the cohesion

of the summaries [2, 3]. Though extractive approaches are easy to implement, the drawback is that the

resulting summaries often contain redundancy and lack cohesion and coherence. Maximal Marginal

Relevance (MMR) metric [4] was used to minimize the redundancy and maximize the diversity among

the extracted text passages (i.e. phrases, sentences, segments, or paragraphs).

There are several approaches used for summarizing multiple news articles. The main approaches

include sentence extraction, template-based information extraction, and identification of similarities

and differences among documents. Fisher et al [6] have used a range of word distribution statistics as

features for supervised approach. In [5], qLDA model is used to simultaneously model the documents

and the query. And based on the modeling results, they proposed an affinity propagation to

automatically identify the key sentences from documents.

III. System Design

The overall system architecture is shown in the Fig. 1. The inputs to the multi-document

summarization system are multi-documents which are crawled based on the urls given and the output

given by the system is a summary of multiple documents.

Fig. 1 System Overview

System Description

The description of each of the step is discussed in the following sections. The architecture of our

system is as shown in Fig. 1.

295

1. Pre-processing

Pre-processing of documents involves removal of stop words and calculation of Term Frequency-

Inverse Document Frequency. Each document is represented as feature vector, (ie.,) terms followed by

the frequency. As shown in Fig. 1, the multi-documents are given as input for pre-processing, the

documents are tokenized and the stop words are removed by having stop-word lists in a file. The

relative importance of the word in the document is given by

Tfidf(w)= tf*(log(N)/df(w)) -(1)

where, tf(w) – Term frequency (no. of word occurrences in a document)

df(w) – Document frequency (no. of documents containing the word)

N – No. of all documents

2. Document clustering

The pre-processed documents are given as input for clustering. By applying the k-means algorithm,

the documents are clustered for the given k-value, and the output is the cluster of documents

containing the clusters like cricket, football, tennis, etc.., if the documents are taken from the sports

domain.

3. Topic modeling

Topic models provide a simple way to analyze large volumes of unlabeled text. A "topic" consists of a

cluster of words that frequently occur together. In this paper, Latent Dirichlet Allocation is used for

discovering topics that occur in the document set. Basic Idea- Documents are represented as random

mixtures over latent topics, where each topic is characterized by a distribution over words.

Sentence analysis

Multi-documents are split into sentences for analysis. It involves tagging of documents by extracting

the keywords, named-entities and the date for each document. Summary generation in different

perspectives can be done from the tagged document.

Query and Relevance analysis

The semantics of the query is found using Tamil Word Net. The relevant documents for the given

query are retrieved. The relevance between the sentences and the query is calculated by measuring

their similarity.

Query-oriented Topic modeling

In this paper, both topic modeling and entity modeling is combined [3]. Based on the query, the topic

modeling is done by using Latent Dirichlet Allocation (LDA) algorithm. Query is given as prior to the

LDA and hence topic modeling is done along with the query terms. Query may be topic or named-

entity along with date i.e. certain period of time.

296

4. Sentence scoring

The relevant sentences are scored based on the topic modeling. For each cluster, the sum of the word’s

score on each topic is calculated, the sentence with the word/topic of high probability are scored

higher. This is done by using the cluster-topic distribution and the topic-word distribution which is

the result of the Latent Dirichlet Allocation.

5. Summary generation

Summary generation involves the following two steps

5.1 Redundancy elimination

The sentences which are redundant are eliminated by using Maximal Marginal Relevance (MMR)

technique. The use of MMR model is to have high relevance of the summary to the document topic,

while keeping redundancy in the summary low.

5.2 Sentence ranking and ordering

Sentence ranking is done based on the score from the results of topic modeling. Coherence of the

summary is obtained by ordering the information in different documents. Ordering is done based on

the temporal data i.e. by the document id and the order in which the sentences occur in the document

set.

IV. Results

Table 1 shows the topic distribution with number of topics as 5, the distribution includes the word,

count, probability and z value. The topic distribution is for each cluster.

Table 1 Topic model with number of topics as 5

TOPIC 0 (total count=1061)

WORD ID WORD COUNT PROB Z

645 அேயா�தி 42 0.038 5.7

2806 தI�	� 38 0.035 5.4

2134 இ": 36 0.033 5.2

589 அைம	� 32 0.029 4.8

1417 அரO 27 0.025 2.9

2371 ல�ேனா 27 0.025 4.5

…

V. Conclusion and Future Work

In this paper, a system is proposed to generate summary for a query from the multi-documents using

Latent Dirichlet Allocation. The multi-documents are pre-processed, clustered using k-means

297

algorithm. Topic modeling is done by using Latent Dirichlet Allocation. The relevant sentences are

retrieved according to the query, by finding the similarity between the sentences and the query.

Sentences are scored based on the topic modeling. Redundancy removal is done using MMR

approach.

Topic modeling can be extended to find the relationship between the entities, i.e. the topics associated

with the entity as a future work.

References

� Arora.R and Ravindran.B, “Latent dirichlet allocation based multi-document summarization”.

In Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data, 2008,

pp. 91–97.

� Azzam.S, Humphrey.K and Gaizauskas.R, “Using coreference chains for text summarization”.

In Proceedings of the ACL Workshop on Coreference and its Applications, 1999, pp. 77-84

� Barzilay.R and Elhadad.M, “Using lexical chains for text summarization”. In Proceedings of the

ACL Workshop on Intelligent Scalable Text Summarization, 1997, pp.10-18.

� Carbonell.J, and Goldstein.J. “The use of MMR, diversity-based reranking for reordering

documents and producing summaries”. In Proceedings of the 21st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, 24-28 August,

Melbourne, Australia, 1998, pp. 335-336.

� Dewei Chen, Jie Tang, Limin Yao, Juanzi Li, and Lizhu Zhou. Query-Focused Summarization

by Combining Topic Model and Affinity Propagation. In Proceedings of Asia-Pacific Web

Conference and Web-Age Information Management (APWEB-WAIM’09), 2009, pp. 174-185.

� Fisher. S and Roark.B, “Query-focused summarization by supervised sentence ranking and

skewed word distributions,” Proceedings of the Document Understanding Workshop (DUC’06),

New York, USA, 2006 pp.8–9.

298

