
Tamil Internet 2004, Singapore 83

Counting Letters in an Unicode String

T.N.C.Venkata Rangan
Chairman & Managing Director

Vishwak Solutions Pvt. Ltd., India

Unicode is now being used worldwide for all types of applications involving multi-languages.
It has found wide adoption for sharing documents like Web Pages and other forms of data
seamlessly. In all these applications, it is very important we have utility functions to do all the
string handling tasks which were commonly available in the ANSI/8-bit world.

One of the problems I faced was when I was doing Tamil Unicode Web Pages. When
compared with English, Tamil has longer words used frequently; and also Tamil Text have to
be displayed with slightly bigger font-size than nearby English text for easy reading. For
getting the design you desire in Web pages, we generally format texts to fit in with our
layouts and we use Style Sheets (CSS) to specify exact dimensions. In one of the web layouts
I was working, we had Tamil Texts that has to be shown in the left-hand navigation.
Navigation panels typically in a web-page are narrow, with say width in the range of 100
pixels or so. The problem was when the words were long than what can normally be fit into
the given space, browsers tend to expand the layout to accommodate the given text.
Specifying word-wraps don't help here as a single word itself is long. To get around this, we
have to programmatically count the number of letters in a word and insert line breaks after ‘n’
number of letters.

The problem here is, if we use the string length functions included in major programming
platforms we get only number of characters based on storage sizes. They don't understand the

language and so don’t return letter count, instead they return only count based on

character storage. For example if the text is Tamil ' or ', or Hindi , the
returned length is '2'. Obviously this is incorrect, as per language grammar it should be

counted as '1' letter. The reason it counts two in Unicode is because to get the letter in

Unicode, two characters are combined and , which from a storage perspective is ‘2’
storage slots.

To come up with a reusable solution to this problem, this paper presents with implementations
in major programming platforms like Microsoft .NET, JavaScript and PERL. Generic
Implementations with full source code for all the 3 platforms are made available in my blog7

at www.venkatarangan.com/blog/content/binary/UnicodeLengthSourceCode.zip

The Unicode Technical Standard1 #18, defines Regular Expression support for string handling
of Unicode Strings. Though Microsoft .NET, JavaScript and PERL supports Regular
Expressions, in this paper I have shown slightly different approaches to solve the problem.
The idea being to showcase different ways of Unicode string handling with these platforms.

Let us now look into each of these implementations in detail.

Tamil Internet 2004, Singapore 84

 Microsoft .NET Implementation

The .NET Implementation exposes a class “UnicodeString” which has a method “Length()”,
this returns the number of Tamil letters present in a string.

Figure 1: Microsoft .NET Implementation (Partial code, for full code refer to download)

This method (Figure 1) uses .NET Framework, System.Char.GetUnicodeCategory()2 method.
This method categorizes a Unicode character into a group identified by one of the
UnicodeCategory3 (Defines the Unicode category of a character) values. The official data
mapping4 Unicode characters with Unicode Category values is defined at Unicode.org.

In the method, we first we find out the total string length, using the normal String.Length
method. Then we use GetUnicodeCategory to find out those characters that are Spacing Mark,
Spacing Combining Mark, Control Codes and Other Not Assigned Characters. We subtract
this count from the total length. The next two lines are basically exceptions. The first

exception is to handle (Sri) and (KSha). Both these letters have no specific slot
allocated for them in Unicode, but are formed by combination of two existing Unicode Slots.
So when you count them, they are normally counted as 2 letters. So we need to subtract them
once. The next exception is for Ayudham (_). This is not counted, so we add the number of
Ayudhams.

Tamil Internet 2004, Singapore 85

JavaScript Implementation

In the JavaScript Implementation, we take a different approach to solve the problem. We
count the Unicode characters that have to be excluded. The characters we need to exclude
from counting, with in the Tamil block turns out to be:

So the logic followed in the Javascript implementation is to count the total length, subtract

the exclusions. As in the Microsoft .NET implementation, we handle (Sri) and
(KSha) as exceptions. Figure 2, shows the Javascript implementation.

Only JavaScript versions later than 1.35 is fully compliant in handling Unicode Strings.
This means this Javascript Implementation will work well with all latest Internet Browsers
like IE 5.0+, Mozilla 1.6+ & Safari 1.2+, across platforms.

Tamil Internet 2004, Singapore 86

Fig 2: Javascript Implementation

 PERL Implementation

In the PERL Implementation, the technique used is very similar to Microsoft .NET
implementation. We use the Unicode Category to find out which characters to exclude in
counting. The interesting thing in this implementation is that I have used Regular
Expressions to do this, unlike in .NET, where I had looped through each character.

Tamil Internet 2004, Singapore 87

Figure 3: PERL Implementation

Please note the same technique can be used in .NET as well, and the two implementations
use different techniques to achieve the same result only to illustrate variety in problem
solving.

While developing this solution in PERL, I noticed that using RegEx to count characters in
a Unicode String didn’t perform correctly all the time. To circumvent this problem, I have
replaced the characters to be excluded and then counted the number of characters
replaced.

Beginning with version 5.6, Perl6 uses logically-wide characters to represent strings
internally. This means all Unicode String Handling, including Regular Expressions
(REGEX) based functions will perform correctly in PERL versions greater than 5.6.

Tamil Internet 2004, Singapore 88

 Glyph Count

In the Microsoft .NET Implementation, I have tried to implement a function that returns
the count of Glyphs that will be used to display a Tamil Unicode String. It has to be noted
that Glyphs and number of Glyphs used is dependent on the Font used, so this glyph count
is only indicative and not conclusive.

One application I see for the Glyph count is to design CSS and Layout accurately. This is
possible, as knowing Glyph count, we can pre-determine the number of pixels that will be
used to display a Tamil String.

 Figure 4: Glyph Count Implementation in Microsoft VB.NET

Conclusion

Using these generic implementations, we can easily count the number of Tamil letters present
in a Unicode String. This will help us to manage Tamil inputs and ensure we achieve our
desired display layouts as easily as we do English Text.

Foot Note from Author

I would like to thank Mr.Muthu Nedumaran, Chairman, INFITT and Dr.K. Kalyanasundaram,
Vice Chairman, INFITT for encouraging me to write this paper. Initially I was only working
on a quick-fix for this problem, but Mr.Muthu inspired me to work on this complete, multi-
platform solution.

I also would like to express my thanks to my colleagues at Vishwak Solutions Pvt. Ltd.,
Ms.V. Srimathi and Mr. Sathish Kumar. Both of them helped me in coding the PERL and
JavaScript implementations.

Tamil Internet 2004, Singapore 89

References

1. Unicode Technical Standard #18
2. (http://www.unicode.org/reports/tr18/)
3. Char.GetUnicodeCategory Method (.NET Framework)

(http://msdn.microsoft.com/library/en-
us/cpref/html/frlrfSystemCharClassGetUnicodeCategoryTopic.asp)

4. UnicodeCategory Enumeration
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemglobalizationunicodecategoryclasstopic.asp)

5. The official data mapping Unicode characters to the General Category value is
available at http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

6. Javascript and Unicode
7. (http://www.js-x.com/javascript/core_js15/ident.php#1009568)
8. Unicode in PERL
9. (http://aspn.activestate.com/ASPN/docs/ActivePerl/lib/Pod/perlunicode.html)
10. Venkatarangan’s Blog
11. (http://www.venkatarangan.com/blog)

