
��������	�
����������������������

__
96�

���
AAnn OOvveerrvviieeww ooff ‘‘SSwwaarraamm’’::

AA LLaanngguuaaggee ffoorr PPrrooggrraammmmiinngg iinn TTaammiill

S.G. Ganesh

(Software Engineer, Hewlett-Packard, Bangalore, India)

G.R. Prakash and K.K. Ravi Kumar

(Software Engineers, Verizon, Chennai, India)

��

Introduction:

“Swaram” is a simple, general-purpose and procedural language designed for programming in
Tamil. The authors of this paper are the designers and developers of a working version of the
compiler and a virtual machine (interpreter) as a ‘proof of concept’. The sample implementation
was done as an academic project, when the authors were pursuing their MCA degree in PSG
College of Technology, Coimbatore, India. This paper provides a brief overview on motivation
for the project, design considerations, technical overview of the implementation of Swaram. Few
sample programs are also provided for illustrating the programming aspects of Swaram.

Motivation:

Knowledge of English language is a pre-requisite for computer programming (as of now, at least
in India) and computing should not be the luxury of a privileged few, who know English. To
enable the common man to work in his mother tongue, programming languages should be avai-
lable in regional languages as well.

This is a well-recognized need. Providing a preprocessor (the simplest alternative), a full-
fledged native-language programming environment (for example, Visual Basic language and
environ-ment in French), or even a full-fledged programming language (for instance, the Ruby
language for Japanese) are few of the well-known means to achieve the same end.

Two important questions naturally arise here. Which is the best alternative? If a preprocessor
will do, isn’t it an overkill to provide a programming language? There is no single and simple
answer for these questions. There are many perspectives from which we have to approach this
question. Let us answer these questions indirectly by taking-up analogies for providing design
and usage perspectives.

Today, printing high-resolution documents is taken for granted in the printing industry. However
it was not the case before the arrival of PostScript. Desktop publishing was a real nightmare
with presence of innumerable document formats, font types, character encoding and image

Tamil Internet 2003, Chennai, Tamilnadu, India

__
97

representation schemes. Today, PostScript is the industry standard for desktop publishing; it is
flexible, extensible and can provide high-quality images – more than that, it is device
independent! PostScript is not a file format – it is an object-oriented, interpreted language! Even
in small hand-held printing devices, it is enough that the device has a PostScript interpreter - it
can print the same documents used for professional publishing. That is the difference a
language can make, even for printing documents. Yes, a language provides power and
flexibility, but most importantly, it provides a means of abstraction – that is why it has a unique
advantage over other schemes to get the work done.

Let us see another analogy from the field of education. English teachers find one major problem
in teaching the language to non-native speakers in countries like India. Students tend to think in
their native language and do word-by-word translation into English! Such mental ‘transliteration’
doesn’t work for even gaining natural fluency if not gaining mastery over it. In just the opposite
way, we write software that is essentially English, and put a layer over that to ‘transliterate’ it - it
is just unnatural! When a programming language directly supports program-ming in a regional
language, the barrier itself is removed; and at the same time it becomes a natural and effective
tool for programmers to code in their native language. This should explain why native Japanese
users find Ruby language to be very convenient, natural and useful though there is wide
availability of programming languages based on English with a Japanese.

From the brave vision that programming should be available universally, our language derives
its name from the musical term ‘Swaram’ - since music is an universal language! Swa-ram, in
fact derives its main idea and inspiration from the Ruby language. Ruby is an interpreted,
scripting and object-oriented language with extensive support for Japanese script. The primary
motivation for the designer of Ruby, Yukihiro Matsumoto, was to support Japanese for scripting,
since he found that no good scripting language could help him for that purpose.

Design Considerations

The objective of the authors was to design and implement a programming language and related
tools especially for Tamil. The design considerations for such a language is as follows. Such a
programming language:

1) Should be for general purpose and easy to use and learn

2) Should be platform independent and portable

3) It should be capable of having specialized support and functionality for various specific
aspects of the Tamil language

4) Should use a well-established program translation technology and programming para-
digm

5) Should be capable of supporting the Tamil language fonts directly and without much
effort from the programmer

6) Should be easy to extend support to other Indian languages

7) Should be similar to widely used programming languages like C/C++/Java so that the
learning curve will be minimal for those who already know programming and make the
best use of it.

‘Swaram’ is thus designed as a general-purpose, easy-to-learn, platform-independent and port-
able, both compiled and interpreted and extensible language.

��������	�
����������������������

__
98�

Brief Technical Overview

Swaram derives most of its syntax and semantics from Java and C languages. A sample
implementation has been developed from the scratch without using any compiler generator
tools. The language has 30 keywords.

�

List of Keywords in Swaram

Swaram supports PANDITHAM and Unicode coding schemes. To achieve extensibility, Swaram
limits the language dependency to lexical analyzer only. The current implementation of the
virtual machine is for the Windows platform. It has a very few APIs for the two languages that
are supported - English and Tamil. A simple IDE (Integrated Development Environment) is also
provided to facilitate programming in Tamil.

Program Translation

Swaram implementation comprises of three major parts:

 1) A compiler for compiling the programs

 2) A virtual machine (interpreter) to run it

 3) Modules for compile-time and run-time support for Tamil

The compiler is written in C and the virtual machine in C++. The result of compiling a Swaram
program is an intermediate file, which contains Java like bytecodes. Swaram bytecodes
(intermediate language) are compatible with that of JVM’s with a few exceptions (as discussed a
bit later). A runtime interpreter loads the file and executes the bytecode instructions. In this way,
Swaram follows Java technology for program translation.

Compilation

Swaram provides an option to choose between PANDITHAM or Unicode encoding scheme for
the processing and storage of data. By default it uses PANDITHAM - this makes representation
and processing of character data easier and basic requirements such as sorting becomes very

Tamil Internet 2003, Chennai, Tamilnadu, India

__
99

easy. To achieve extensibility Swaram limits the language dependency to lexical analyzer only.
Currently Swaram supports English and Tamil and is to be extended to support Hindi and
Telugu. Whatever may be the source language, the same tokens are returned to the parser.
The string information is passed as a PANDITHAM string. For our implementation we have
Tamil source text in ‘Ayyan’, a PANDITHAM based font. A converter program has been
implemented to store the text as PANDITHAM code. The converter program can be extended to
support any font and language.

Intermediate File Format

Java's class file format is optimized only to Java and its object model. Swaram is capable of
producing Java class files but for specialized use it has a separate file format - called the
Swaram file format. It is very efficient, in that it is an improvement over Java class files. A better
example is that the constant pool consists of 12 types of entries in Java Class File format. This
creates an overhead in constant pool resolution and contributes in reducing runtime speed. But
Swaram has only 4 types of constant pool entries that are direct and the remaining are included
in the byte code itself resulting in faster execution.

Swaram Virtual Machine

The current implementation of SVM (Swaram Virtual Machine) runs under Win9x environment
and can be implemented for any OS. The technology is as in JVM (Java Virtual Machine) but
has more functionality for multilingual support and faster execution. SVM is a stack-oriented
machine. The word size of the stack is 8 bytes. This means that all calculations are expandable
to 8 bytes. Unlike JVM, SVM follows static linkage and supports procedural constructs. For
faster execution SVM introduces new bytecodes like fipush, iipush, etc. Since strings are
extensively used, they are special data types and have dedicated bytecodes like strload and
strcat.

Compilation and Interpretation

Let us illustrate with a simple example of ‘if’ statement to show how the code is compiled and
executed in Swaram.

If (A<B)

 ++A

It is compiled to the intermediate language as follows (comments added for explanation):

 iload_0 // push the first variable on the stack

 iload_1 // load the second variable on the stack

 if_icmpl T_0 // compare them and jump accordingly

F_0 : // if the condition is false, it comes here

 iconst_0

 goto E_0

T_0 : // if the condition is true

 iconst_1

E_0 :

��������	�
����������������������

__
100�

 ifeq OUT_OF_IF_1

 iinc 0 1 // increment the first variable by one

OUT_OF_IF_1 : // label to denote the end of if statement

The runtime interpreter provides a simulated environment for interpreting these bytecodes by
allocating necessary memory and proving an operand stack for each method.

Programming In Swaram

Swaram is designed such that it is easy for the beginners to learn and make the best use of the
language. If a programmer already knows a language such as C/Java, he can straightaway start
writing non-trivial programs in Swaram. Here are few simple examples to have a feel of
programming in Swaram.

1) The canonical “Hello, world” program can be written in Swaram as follows:

�
The output of the above program is:

Tamil Internet 2003, Chennai, Tamilnadu, India

__
101

Similar to the popular languages like C, the program execution starts at the ‘main’ function. The
APIs in Swaram are prefixed by the corresponding header file names. Currently three header
files are supported: stdio (for IO), math (for mathematical operations) and graphics (for drawing
simple figures).

Use the IDE to compile and execute the program that you have written by choosing the
Project->Compile and Project->Run from the main menu of the Swaram editor. Any file
name extensions can be given and .s is preferred.

2) Program for finding the factorial of a number using recursion written in Tamil.

�

The below program depicts that you can mix English in between the Tamil ones.

��������	�
����������������������

__
102�

�

3) Program to sort the list of given names in Tamil

Tamil Internet 2003, Chennai, Tamilnadu, India

__
103

Conclusion:

‘Swaram’ is an attempt to give fillip for writing ‘truly’ Tamil software. It can also be a boon for
students to learn programming in their mother tongue. A ‘Proof of Concept’ implementation has
been successfully designed and a working version has been developed.

References:

Panditham : http://www.infitt.org/ti2000/tamilinaiyam/conference_hub.html

PostScript : http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

Ruby : http://www.rubycentral.com or http://www.ruby-lang.org

Unicode : http://www.unicode.org

Ken Arnold and James Gosling, ‘The Java Programming Language’, The Java Series, Addison-
Wesley, 1998.

Brian W. Kernighan and Dennis M. Ritchie, ‘The C Programming Language’, Second edition,
Prentice-Hall, Inc., Englewood Cliffs, 1988.

Tim Lindholm and Frank Yellin, ‘Java Virtual Machine Specification’, The Java Series, Addison-
Wesley, 1997.

Acknowledgements:

The authors would like to thank Dr P. Navaneethan, Asst Professor, Dept of MCA, PSG College
of Technology, Coimbatore for his constant support and encouragement.

Authors:

S G Ganesh is a Software Engineer working for the C++ compiler front-end team in Hewlett-
Packard, Bangalore, India. He is currently co-authoring ‘Programming in C#, Java and C++:
Comparing Best Features and Practices’, for Addison-Wesley, USA. He is also the author of
'Deep C' (BPB Publications, ISBN 81-7656-501-6). His research interests include principles of
programming languages and compiler design. He did his MCA degree from PSG College of
Technology, Coimbatore, India. You can reach him at ‘s.g.ganesh@sify.com'.

G R Prakash is a Software Engineer working in Verizon, Chennai, India. He is currently co-
authoring ‘Programming in C#, Java and C++: Comparing Best Features and Practices’, for
Addison-Wesley, USA. His research interests include enterprise computing, operating systems,
neural networks and microprocessor architectures. He did his MCA degree from PSG College of
Technology, Coimbatore, India. You can reach him at ‘grprakash@myrealbox.com’.

KK Ravikumar is a Software Engineer working in Verizon, Chennai, India. His research interests
include Multilingual Computing, Object Oriented Programming and Data Structures. He did his
MCA degree from PSG College of Technology, Coimbatore, India. You can reach him at
‘kkravikumar@yahoo.com’.

